-
15k-25k·15薪 经验不限 / 本科科技金融,人工智能服务 / 上市公司 / 500-2000人岗位要求: 1、积极配合算法研发团队,收集,清洗,整理数据,并进行数据标注,建立算法测试/训练数据集,为算法研发人员提供数据支撑; 2、负责算法的准确性,性能,稳定性,可用性等的测试和评测,完成算法和产品的集成测试,编写测试用例和测试报告; 3、能够依据算法的不同,从服务业务的功能、效果、稳定性进行测试设计与执行,根据业务的不同制定不同的测试策略,使用不同的测试方法,分析定位问题; 4、参与产品需求评审,具有较好的业务理解能力和沟通能力,测试严谨认真负责。 任职资格: 1、本科及其以上学历,超过1年TTS\ASR\NLP的相关测试经验; 2、了解自然语言处理,或语音识别的相关测试方法和基础知识,了解asr、nlp、tts的测试流程 3、熟悉测试流程以及测试相关技术者优先; 4、掌握Python语言,使用jmeter、potman等测试工具; 5、有较强的创新能力,良好的沟通能力以及团队协作能力; 6、良好的责任心、逻辑性、沟通能力,团队合作精神,独立并积极主动。
-
1. 负责设备端语音降噪唤醒、识别、语义理解问题排查及优化研发,包括结合海尔语音设备整机结构进行语音效果问题分析、算法调优,设备端调试及问题修复; 2. 侧重于语音设备端降噪增强、识别、语义理解类算法研发及应用创新,推进海尔语音系统架构优化升级,推进语音技术在海尔产业落地,打造标准化解决方案;
-
岗位职责: 1. 语音识别,声纹识别方向 需求: 1. 熟悉C++和Python 2. 熟悉机器学习和深度学习算法 3. 熟练使用Pytorch或TensorFlow 4. 有Kaldi,DeepSpeech,ESPNet经验优先 5. 每周实习时间保证4天以上
-
职位描述: 1、负责对话机器人产品的智能语音交互相关算法及产品的研发工作,包括不限于语音识别、打断识别、弱语气识别等 2、负责声学模型、语言模型的训练与优化等相关工作; 3、负责算法在对话机器人产品的工程实现与性能优化。 任职要求: 1、信号处理/模式识别/人工智能等相关专业毕业; 2、熟练使用C/C++编程,熟练使用Matlab / Python / Shell等语言进行算法研究; 3、熟悉端到端深度学习语音识别经验,熟悉wav2vec、HuBERT、WavLM等主流深度语音模型 4、有语音识别/语音合成/全双工语音等语音算法相关一年以上工作经验; 5、熟悉语音识别基本算法(HMM, GMM, CTC等)与框架(HTK, Kaldi等); 6、熟悉语音信号处理者优先,包括降噪, EC, VAD, 音频特征提取等; 7、有对话产品落地/上线者优先
-
1.负责语音模型算法的研发工作,包括语音降噪增强、语音识别、语音合成等语音算法的研发和应用落地; 2.侧重于语音降噪增强、识别类算法在智能家居会话场景的应用,及语音合成算法在对话场景的落地; 3.通过跟踪热点技术和创新,确保算法性能行业领先,帮助海尔产业产生实际价值和打造业界领先的语音应用产品; 4.持续关注学术界和行业的最新研究动态,跟进语音相关的前沿技术发展。
-
美团平台汇聚美食、外卖、酒店旅游、电影、打车、共享单车、休闲玩乐、美容美发等200多个品类和900万活跃商家,是具有全国影响力的零售科技平台。 我们团队不仅负责美团App的用户增长、大前端技术基础设施建设、公司语音和智能交互技术及产品研发,还承担了多条业务线的产品设计及品牌营销职责,同时整合地图服务部、客户服务和体验部等部门,致力于用科技提升美团数亿消费者、数百万商家、骑手、司机和团长的服务体验。美团平台拥有高并发、多业务的复杂场景,为技术深度优化提供了最佳实践可能。这里有简单、讲逻辑、有爱的团队,更是一块理想的实战场地,舞台广阔,欢迎你来尽情施展。 岗位职责 1. 负责美团App首页推荐全链路核心算法策略的优化迭代,通过海量数据分析挖掘、超大规模深度学习实践、供给/召回/排序/机制算法升级,结合产品形态的优化与创新,更好地匹配用户的多样化需求,提升美团App的用户及流量规模,并形成技术沉淀; 2. 深耕业务特点和生活场景(包括但不限于到家、到店、出行等场景),从美团LBS服务共性解决方案出发,探索大模型应用、用户实时意图识别、多业务异构供给混排、多目标价值定义等方向与挑战; 3. 负责推荐算法中的某个技术或业务方向,制定相应的中长期技术规划,并在具体场景成功应用; 4. 参与构建团队,培养核心骨干,打造团队核心竞争力。 岗位基本需求 1. 计算机、数学、统计或者相关专业本科及以上学历,2年及以上推荐、广告、搜索工作经验,优秀的编码能力,扎实的数据结构和算法功底; 2. 熟悉大规模机器学习、数据挖掘、分布式计算等领域前沿技术,了解召回、排序相关基础算法; 3. 具有一定的业务和产品敏感度,具有创新精神和理论结合实践的能力,有主动思考和学习的驱动力,优秀的分析问题、解决问题能力和团队合作意识,对挑战性问题充满激情。 具备以下者优先 1. 大流量规模下的推荐、广告、搜索经验,尤其是混排、重排、用户理解模块经验; 2. 有复杂业务环境下的算法创新及落地经验; 3. 密切关注业界最新进展,在KDD、SIGIR、RECSYS等顶会发表过创新性论文或调研业界论文并成功应用于实践; 4. 在Kaggle等平台上取得较大型机器学习/深度学习竞赛靠前名次。 岗位亮点 美团App大流量、多业务、异构供给场景,提供了业界最挑战性的推荐课题之一,在多业务异构混排、场景化推荐、推荐生态等方面都比单一的内容or电商推荐有更多需要突破的技术课题,特别适合希望在算法方向做深做强、追求卓越的同学。 1. 【业务核心】:直接上手迭代美团首页,做出的贡献可以影响到数亿人的日常生活; 2. 【方向多元】:算法、模型、策略、业务多方向选择;技术、行业、个人基本功全方位提升; 3. 【挑战性强】:从美团的多业务、多场景、多目标特性入手,解决业界核心问题,获得快速能力增长; 4. 【不设边界】:作为一家快速发展的企业,美团为优秀的同学提供更快的职业发展机会,无论你的背景和经历,只要你有才华和激情,都能在这里找到属于自己的舞台!
-
职位职责: 1、负责模型的全流程工作,包括但不限于数据、训练、评测、推理部署,保证数据的高质量和有效性; 2、LLM算法应用研究与算法落地工作,包括但不限于语言LLM、多模态LLM,Prompt工程/RAG/Agents/SFT/RLHF等LLM相关前沿技术; 3、持续探索在各种用户场景下,利用AI能力增强业务迭代效果; 4、深度参与产品研发项目,和产品经理/业务研发/质量/等同学密切配合,提高项目整体收益。 职位要求: 1、计算机相关专业本科及以上学历,3年以上深度学习算法研究与开发经验,具有LLM开发和实际落地经验; 2、具备LLM相关算法的扎实基础,包括但不限于单模态/多模态LLM训练(RAG/SFT/RLHF/Prompt)、部署和蒸馏等领域的全面学习和实践经验; 3、熟悉主流的Bert/Transformer/ViT/Clip等主流预训练模型,熟练掌握TensorFlow/PyTorch/Keras等任一主流机器学习框架; 4、有较强的业务问题到算法模型的建模能力,有强烈的技术好奇心、自驱力和进取心,能及时关注和学习业界最佳实践; 5、岗位地点:北京、上海、深圳。 加分项: 1)有高关注度的机器学习相关博客或GitHub项目; 2)有过数据挖掘/机器学习或ACM-ICPC/NOI/IOI相关的竞赛经历并取得优秀成绩; 3)有国际**会议(KDD/NeurIP/ACL/EMNLP/IJCAI/AAAI/SIGIR等)Paper发表者优先。
-
工作职责 1、 主要负责应用多模态(文本、视频、语音处理)建模、深度学习等技术,为医疗健康产品研发具有科学性、可行性、先进性的算法解决方案,提高AI在心理、慢病等数字疗法领域的诊断和治疗能力,满足医疗健康多场景使用; 2、 负责调研、探索、应用深度学习等技术的最新的研究和技术进展,优化算法建模实验,提高算法模型性能; 3、 参与医疗AI产品的研发,与产品团队、开发团队合作完成创新技术向应用成果的转化; 4、 参与外部研究机构的学术或科研项目,发表论文和申请发明专利。 任职要求 1、计算机、统计学、数学、自动化、生物医学工程等相关专业硕士或以上学历; 2、有2年以上多模态、自然语言处理、深度学习等算法工作经验; 3、具有较好的算法设计与编程开发经验,熟练掌握Python或R编程,熟悉SQL语言; 4、具有良好的沟通能力与多学科团队协作能力; 5、在人工智能领域**期刊、会议上发表过学术论文者优先; 6、在医疗人工智能领域有相关研究经验者优先。
-
资深算法工程师(国际支付风控方向) 岗位职责: 1.支付风险识别与防控 ●负责跨境电商业务中支付风险的全面识别与防控,重点治理欺诈(盗卡、盗账户 友好欺诈)等方面风险,确保支付全链路安全可靠。 ●利用数据分析和机器学习技术,精确识别支付风险,建立有效的风控模型体系。 2.风控模型全链路管理 ●主导支付风控模型的全链路开发与上线工作,包括需求调研、风险探索、方案设计、模型开发、系统集成、部署上线、效果评估、持续优化和监控预警。 ●与产品、工程、业务团队紧密合作,确保风控模型精准全面覆盖业务场景,并能够及时应对市场变化。 3.前沿技术应用与创新 ●深入探索全球各大市场的新型支付作弊行为,利用多模态大数据进行风险评估与预测。 ●应用异常检测、集成学习、强化学习、序列模型、图模型、大规模预训练模型等前沿技术,提升风险识别的准确率和召回率。 职位要求: 1.经验与教育背景 ●拥有3年以上风控算法研发经验,对跨境支付业务有系统性理解和实际风控经验。 ●计算机科学、数据科学、统计学或相关专业,本科及以上学历。 2.技术能力 ●精通Python编程,熟悉主流机器学习框架(如TensorFlow、PyTorch等),具备优秀的算法实现和优化能力。 ●深入理解大规模数据挖掘、机器学习、分布式高性能计算等技术,能够高效处理海量数据,能够应对高QPS低延时模型需求。 3.业务敏感性与团队合作 ●对风控领域充满热情,具备敏锐的业务洞察力,熟悉全球各主要区域常见支付欺诈风险模式,能够迅速适应和响应业务需求的变化。 ●具备强烈的责任心和主观能动性,能够独立完成任务,同时拥有优秀的团队合作精神和沟通能力,推动项目顺利进行。
-
[1] 在公司内外部业务支持,特别是在对话系统中,支持NLP算法开发和模型迭代。 a)对意图识别、相似度、通话结论、词槽抽取等NLU模型,进行开发和优化迭代; b)尝试不同的模型网络结构进行模型效果优化。 [2] 支持对话机器人的配置、调优和排查问题。 a)协助上线调优NLU服务和配置机器人; b)支持机器人评价和优化方法的构建; c)整理数据、质检和数据分析、指标统计等;bad case 追溯和修复(质检反馈)。 [3] 大模型探索。 a)研发大模型微调技术,支持下一代对话机器人; b)利用大模型做摘要、问答和其他判别式任务。 职位要求: 1、计算机、统计等相关专业,硕士研究生,NLP专业最佳;熟练掌握NLP、统计、数据分析等相关算法、具有深度学习方面的模型构建和调优能力者优先; 2、具有优秀的逻辑思维能力、分析问题解决问题的能力, 良好的沟通能力和团队协作精神; 3、熟练掌握Python和office工具;掌握基本的数据结构和算法;英语满足阅读专业论文的能力; 4、在学校或企业实习中,具有NLP和相关项目经历者优先考虑; 5、对公司业务方向有兴趣,对工作内容认真负责,有责任心和专研精神。
-
风控算法工程师(设备指纹方向) 岗位职责: 1、设备指纹ID算法的设计和研发,基于设备的硬件、网络、环境等设备信息及用户行为数据,根据机器学习/深度学习算法等多种技术手段,生成设备标识。 2、广泛的平台覆盖能力,基于Web、H5、Android、Ios等平台生成对应平台的设备指纹ID。 3、不断优化各终端设备指纹ID算法,保证设备指纹的稳定性达到要求。 4、设备风险分的开发和应用,实现对终端设备上的风险环境识别、风险检测及风险分析。 职位要求: 1、3年以上反欺诈&风控、反作弊算法研发经历,计算机相关专业本科及以上学历,对机器学习、设备指纹等相关领域有浓厚兴趣。 2、具备良好的项目管理能力、业务流程优化和逻辑判断能力,对风险有敏锐感知,善于从数据和case中发现风险特征和灰黑产作弊规律。 3、熟悉 Python/Scala/Java ,具备优秀的编码能力,至少熟悉一种常见的机器学习/深度学习平台。 4、有钻研精神,对安全风控有热情,主观能动性强,能适应快速变化的业务需求,具备良好的团队合作精神和沟通技巧。
-
岗位职责: 1. 承担基于GPT系列或者其他开源大模型的开发和调优工作,包括训练流程搭建、指令微调、P’rompt工程以及面向下游任务的效果优化等; 2. 完成大规模预训练模型在到店业务场景中的应用落地,支持业务目标提升。 3. 紧跟业界大模型进展,探索前沿技术,解决到店业务的实际问题,包括智能问答、图文内容生成等; 4. 与其他团队密切合作,包括数据工程师、前后端工程师、产品经理等,实现高质量的产品和解决方案。 岗位基本要求: 1. 有大语言模型(LLM)预训练经验,熟悉相关技术细节和优化策略,如大规模语料收集、模型调优优化、自弱监督学习、强化学习等 2. 有小样本学习 (Few-shot learning)、提示学习(P‘rompt learning)等相关技术经验; 3. NLP相关领域3年以上经验,具有扎实的算法理论基础,熟练掌握自然语言主要算法模型,如实体识别、知识抽取等。熟悉NLP主流大模型,如ChatGPT/T5/PaLM/LLaMA/GLM等,对模型背后的原理和各自适用场景有深入的理解; 4. 有基于Tensorflow、PyTorch等深度学习框架的实战项目经验; 5. 具备较强的团队协作能力和沟通能力,有较强的学习能力和业务分析及问题解决能力。 具备以下优先: 1. 具有生成式模型训练及开发经验、信仰AIG者优先; 2. 有NLP、多模态研发背景,对QA/机器翻译/图文生成相关领域有深入理解的优先。 3. 对大规模预训练语言模型技术现状和发展趋势有深刻的理解和认知,并对相关技术有极高的热情。 4. 计算机相关专业博士优先, 发表过大模型相关研究AI顶会论文优先; 5. 具备有良好的代码开发能力,有开源项目开发经验优先。
-
30k-50k 经验5-10年 / 本科旅游|出行 / D轮及以上 / 500-2000人我们正在寻找一名具有丰富自然语言处理(NLP)经验的算法工程师,同时需具备大模型相关的经验和知识。如果您还具备Chatbot相关的经验,那将是一个巨大的加分项。此岗位将负责开发和优化我们的AI解决方案,推动NLP和大模型技术在各类应用场景中的落地。 主要职责: 设计和优化NLP算法,提升系统的理解和生成能力。 研究和应用最新的NLP技术,解决复杂的自然语言处理问题。 开发和优化大规模机器学习和深度学习模型,提升系统性能。 与产品团队和数据科学团队紧密合作,了解业务需求并转化为技术方案。 参与大模型相关项目,推动大模型在各类应用场景中的应用。 进行数据分析和挖掘,提供数据驱动的优化建议。 编写高质量的技术文档和报告,分享研究成果和项目进展。 职位要求: 计算机科学、电子工程、数学或相关领域的本科及以上学历。 至少3年在NLP领域的工作经验。 熟悉常见的NLP技术(如分词、命名实体识别、文本分类、情感分析等)。 具有大模型相关的经验(如GPT、BERT、Transformers等)。 精通Python,熟悉TensorFlow、PyTorch等深度学习框架。 具备数据分析和处理能力,能够理解和处理大规模数据集。 良好的团队协作能力和沟通能力,能够与跨部门团队有效合作。 加分项: 有Chatbot开发和优化的实际经验。 拥有电商、金融、医疗等领域的NLP应用经验。 在学术会议或期刊发表过NLP或大模型相关论文者优先。 具有推荐系统或其他AI应用开发经验者优先。 如果你对NLP和大模型充满热情,并希望在快速发展和充满挑战的环境中成长,我们诚邀你的加入!
-
岗位名称:搜索、推荐算法工程师 岗位职能:算法工程师 工作年限:3-5年 学历要求:硕士及以上 工作职责: 负责如下场景的模型训练以及落地 1、自然语言处理场景;任务举例:文本分类、实体识别、query 分析、分词、情感分析等; 2、搜索、推荐召回场景;任务举例:基于 Query 的召回、基于 item 的召回等; 3、搜索、推荐精排场景; 岗位需求: 1、对数据敏感,具有优秀的逻辑思维能力,善于分析问题,解决问题; 2、精通主流深度学习框架:Tensorflow、PyTorch 等; 3、深刻理解机器学习和深度学习算法原理;对 query 分析、相关性、召回模型、机器学习 排序有深刻的理解和应用经验; 4、深刻理解深度学习算法的训练,可根据不同业务场景对模型本身进行调优,精通训练数 据的构造、训练超参的调整; 5、熟悉主流 NLP 算法及推荐算法,比如:BERT 模型、DSSM、ESMM、CRF、GNN 等; 6、有复现论文模型的相关经验; 7、有深度学习部署框架(Triton、Onnx、TFServing 之一)相关业务应用的落地经验; 8、了解大数据(Spark、Hive)技术; 9、熟悉 Java,有工程落地经验者优先;
-
1、方向一:广告推荐 负责广告召回模块的优化,通过数据挖掘、自然语言处理等技术,在保证广告相关性的同时提升广告召回率,进而提升系统变现能力。 2、方向二:广告点击率/转化率预估 负责CTR/CVR模型优化相关工作,在特征工程、模型结构、机制策略等方面进行持续探索优化,提升广告的点击率和转化率,进而提升系统变现能力以及客户投放效果。 3、方向三:广告反作弊 持续优化反作弊相关的算法策略,以有效识别作弊行为挽回客户损失;建立并完善作弊行为预警及监控系统,提升反作弊系统的事前预警能力以及事后case分析的效率。 1、 计算机相关专业大学本科及以上学历; 2、 精通C/C++/Java/python语言之一; 3、 熟悉分布式计算平台,有海量数据处理经验; 4、 熟悉常用的数据挖掘/机器学习/自然语言处理算法,并有一定的实践经验; 5、 优秀的分析问题解决问题的能力,具备搜索/推荐/广告业务经验者优先。