-
职位职责: ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:Data-抖音团队,负责抖音APP的推荐算法、内容算法、对话算法及大数据工作,对接各场景业务(短视频,直播,图文,电商,社交,生态,投稿,消息,同城,生活服务,音乐,评论,内容理解&安全、智能对话等)。我们的工作涉及大规模推荐算法的优化、复杂约束的优化问题的解决、内容理解、LLM应用以及新业务方向探索、CV/NLP等多个学术领域的算法改进工作、对多种场景的推荐架构的设计和实现和对产品数据的复杂深入的分析工作。在这里,你可以深入钻研机器学习算法的改进和优化,探索工业界最领先的推荐系统架构和推荐大模型算法、可以通过使用最新的大模型等技术支持抖音的数字人、智能客服、AI工具等创新探索;可以通过对产品的深度理解和思考,将算法应用到业务中去;也可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 1、负责图像与视频的内容理解与生成相关算法模型研发与优化,跟进计算机视觉领域的前沿技术研究; 2、负责图像与视频生成模型基座的训练和优化,提升生成效果能力的高美观度和可控度; 3、负责图像与视频的内容理解算法的训练和优化与在抖音各场景的应用研发与落地。 职位要求: 1、2026届本科及以上学历在读,计算机、软件工程等相关专业优先; 2、具备优秀的编码能力,扎实的数据结构和算法功底; 3、优秀的分析问题和解决问题的能力,有良好的沟通表达能力和团队精神; 4、熟悉Diffusion、ControlNet、GAN等生成方案原理,有相关模型研发经验者优先; 5、在图像内容理解和生成领域有经验,有相关方向会议论文者优先; 6、每周可实习4天以上,实习时间3个月以上。
-
职位职责: ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:Data-抖音团队,负责抖音APP的推荐算法、内容算法、对话算法及大数据工作,对接各场景业务(短视频,直播,图文,电商,社交,生态,投稿,消息,同城,生活服务,音乐,评论,内容理解&安全、智能对话等)。我们的工作涉及大规模推荐算法的优化、复杂约束的优化问题的解决、内容理解、LLM应用以及新业务方向探索、CV/NLP等多个学术领域的算法改进工作、对多种场景的推荐架构的设计和实现和对产品数据的复杂深入的分析工作。在这里,你可以深入钻研机器学习算法的改进和优化,探索工业界最领先的推荐系统架构和推荐大模型算法、可以通过使用最新的大模型等技术支持抖音的数字人、智能客服、AI工具等创新探索;可以通过对产品的深度理解和思考,将算法应用到业务中去;也可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 1、负责图像与视频的内容理解与生成相关算法模型研发与优化,跟进计算机视觉领域的前沿技术研究; 2、负责图像与视频生成模型基座的训练和优化,提升生成效果能力的高美观度和可控度; 3、负责图像与视频的内容理解算法的训练和优化与在抖音各场景的应用研发与落地。 职位要求: 1、2026届本科及以上学历在读,计算机、软件工程等相关专业优先; 2、具备优秀的编码能力,扎实的数据结构和算法功底; 3、优秀的分析问题和解决问题的能力,有良好的沟通表达能力和团队精神; 4、熟悉Diffusion、ControlNet、GAN等生成方案原理,有相关模型研发经验者优先; 5、在图像内容理解和生成领域有经验,有相关方向会议论文者优先; 6、每周可实习4天以上,实习时间3个月以上。
-
岗位职责: 1、负责行车场景周视感知算法设计和开发工作,包括高速/城区等场景中的障碍物、车道线等感知任务的模型及后处理算法开发工作 2、负责泊车场景环视感知算法设计和开发工作,包括室内、室外等场景中的车位、障碍物等感知任务的模型及后处理算法开发工作 3、负责自动驾驶领域大模型等前沿技术研发工作 任职要求: 1、计算机、汽车工业、机器人、电子或相关专业; 2、熟悉当前主流的深度学习算法,包括但不限于BEV感知、无监督训练、大模型、目标检测、图像分割、多任务学习、多传感融合等领域; 3、熟悉常用的深度学习框架,如PyTorch、TensorFlow、MxNet等,要求至少对其中一种框架较为熟练; 4、至少精通Python或C++编程,熟悉常用的视觉算法库如numpy/opencv等,了解常用的传统图像处理算法。 5、具备针对车载端侧平台检测/分割等算法设计经验和落地能力,有针对自动驾驶场景落地障碍物、车道线、红绿灯、freespace等算法经验者优先。 6、具有正确的价值观、内在驱动力;具有较强的学习能力、沟通能力和团队协作能力;能主动解决问题;能够承受较强的工作压力。
-
1、参与探索通过计算机视觉技术助力用户线上认证自动化,满足业务场景线上准确率和多变性的要求; 2、 针对性持续优化人脸识别应用在特定场景下的表现,进行相关的模型开发实验、算法流程优化等; 3、 深度优化鉴别翻拍、复印等不合规资料图片的视觉模型算法,进行相关的模型开发实验,开发迭代; 4、 整理数据、抽检和数据分析、指标统计等;bad case追溯和分析; 5、 探索提升算法模型版本迭代优化过程的自动化率,提升迭代流程的复用率; 6、 探索通过迁移学习、模型算法设计及实验,实现专家经验、特定模式的注入,提升跨来源、跨场景鲁棒性。 职位要求: 1、计算机相关专业,硕士研究生,计算机视觉相关专业最佳;熟练掌握CV相关算法、具有深度学习方面的模型构建和调优能力; 2、具有优秀的逻辑思维能力、分析问题解决问题的能力,良好的沟通能力和团队协作精神; 3、熟练掌握Python和office工具;掌握基本的数据结构和算法;英语满足阅读专业论文的能力; 4、在学校或企业实习中,具有人脸识别、人脸实时检索、计算机视觉迁移学习&域适应相关项目经历者优先考虑; 5、实习期要求满足三个月及以上,每周可到4天及以上,研二优先; 6、对公司业务方向有兴趣,对工作内容认真负责,有责任心和钻研精神。
-
岗位要求: 教育背景要求:本科及以上 技能要求:良好的需求理解力、问题分析、归纳能力 、跨领域协调能力 知识要求: 1、优秀的洞察及架构能力,熟悉数字化经验及4A架构; 2、熟悉Transformer、增量预训练、SFT、RAG、Agent技术栈,有大规模集群上实践经验者优先; 3、对技术有热情,具备良好的沟通表达能力和团队精神,自驱力强; 岗位职责: 1、对齐供应链业务战略,联合业务领域识别业务挑战及应用机会点,制定AI应用战略及演进路标,规划并落地AI应用的系统及解决方案架构,牵引应用架构及技术架构的演进; 2、聚焦供应链的核心高价值业务场景,通过构建AI应用,赋能供应方案设计、供应资源决策、订单履行管理等,优化供应链作业及运作模式,提升工作效率、质量与客户/伙伴供应服务满意度。
-
工作职责: 1.研发基于深度学习的遥感图像处理算法(目标检测/图像分割/变化识别)。 2.构建面向多光谱、高光谱、SAR等遥感数据的专用模型。 3.优化模型在复杂地形、小目标、多尺度场景下的表现。 4.实现模型轻量化及边缘计算部署方案。 任职要求: 1.硕士及以上学历,遥感专业优先。 2.3年以上计算机视觉算法经验。 3.精通Transformer、R-CNN、U-Net等架构。 4.熟悉GDAL、OpenCV等图像处理工具。 5.熟悉PyTorch、TensorFlow等至少一种深度学习框架。 6.在建筑物提取、耕地识别等场景有落地经验者优先 具体薪资可根据个人情况面议
-
职责: 1.负责最右推荐产品的研发,用推荐产品/技术来提升用户体验和活跃度 2.应用机器学习、自然语言处理等技术,基于海量用户日志和内容,建立用户画像,构建内容质量及内容标签体系 3.以数据挖掘和数据分析为基础,发现新的产品改进点,驱动产品改进,探索新的产品形态; 4.跟踪业界最新的机器学习算法和研究趋势,并将其应用于实际的生产环境 要求: 1.信息检索,计算机视觉,机器学习、分布式系统方向的计算机专业的研究生或优秀本科生; 熟悉常见的分布式编程范式以及设计模式;有一定的分布式计算系统与机器学习相结合的理论和实践基础; 2.对技术研究和应用抱有浓厚兴趣,有强烈的上进心和责任感,善于思考和运用新知识; 3.扎实的C/C++和python编码功底,熟悉MPI/CUDA等高性能计算框架; 4.在ACM/ICPC, Google Jam, Top Coder,百度之星等比赛取得优异成绩的优先; 加分项: 1.思考过TensorFlow/MXNet/Caffe/Theano/Torch等的架构代码和设计逻辑的优先; 2.对大规模分布式机器学习系统实践经验者优先; 3.有发表NIPS/ACL/AAAI/ICML/IJCAI/EMNLP/SIGKDD/ICCV/CVPR/OSDI/SOSP等顶会论文的优先; 4.如果您乐于设计和实现高性能优雅的系统,而又想拥抱大规模机器学习带来的可能性,欢迎加入我们。
-
工作职责 1.针对医疗领域特定问题,定义任务流程,收集或构建高质量数据集,对LLM进行微调; 2.利用提示工程、模型微调、调用工具插件等方式完成医疗领域特定应用的探索尝试; 3.尝试提升大语言模型在医疗方面的能力,包括但不限于高效训练、人工反馈对齐、多模态、可控文本生成、生成质量评估,以提升LLM性能。 任职要求 1.研究生及以上学历,计算机、电子工程、自动化控制等专业背景,有NLP的研究经验; 2.有扎实的数理基础和良好的逻辑思维能力,有深度学习算法框架使用经验; 3.良好的编程能力,熟悉Python,pytorch,linux下常用指令; 4.熟悉现有的多种大语言模型,例如llama、qwen等; 5.拥有医疗自然语言处理项目经验,或者对人工智能在医疗领域的应用有强烈兴趣; 6.有中文文本处理经验者优先,有计算机、医学、生物信息学等领域论文发表或者大赛获奖经历者优先。
-
岗位职责: 1、基于开源大模型(如CLIP、等)进行领域适配,通过微调、模型蒸馏等技术优化模型在电商对应业务场景中的效果。 2、针对复杂业务需求设计多模态算法架构,必要时从零构建训练数据集并完成模型的自主训练与调优。 3、推动模型的高效部署与性能优化,解决分布式训练、推理加速、模型轻量化(如量化、剪枝)等工程问题。 4、跟进大模型领域前沿技术,探索其在电商业务场景中的应用。 任职要求: 1、***本科及以上学历,数学、人工智能、计算机等相关专业; 2、具备扎实的编程功底,熟练使用Python,掌握 Pytorch 等至少一种主流深度学习框架; 3、熟悉多模态大模型(如CLIP、GPT-4V)及NLP/CV单模态模型(如BERT、ResNet)的原理并且有实际落地经验; 4、具备大模型微调经验,掌握LoRA、Adapter、P-Tuning等参数高效微调方法,或具备自主训练亿级参数模型的能力;
-
工作职责: 1. 负责大语言模型LLM文本理解与文本生成算法研发,开展数据处理、模型训练及推理优化等工作; 2. 负责AIGC内容生成研发工作,将前沿自然语言生成技术应用于实际业务,构建行业垂直领域自然语言理解及生成系统,获取业务收益; 3. 负责自然语言处理方向基于 GPU 的并行多机多卡训练、高性能模型推理等; 4. 对行业最新动态进行跟踪,结合企业业务场景的具体需求,提出改进方案或新算法模型的开发计划,产生实际价值。 任职要求: 1. 对于自然语言处理技术应用到实际业务场景中并产生真实的商业价值具有强烈的热情,有责任感和较好的洞察力; 2. 拥有计算机、自然语言处理、深度学习等相关专业硕士及以上学历,且具备2年以上自然语言处理研究经历或相关工作经验; 3. 具备大语言模型研发经验者优先,具备多模态大模型项目经验者优先; 4. 熟悉一些开源的算法库或工具,如LTP、stanfordNLP、NLTK、Apache OpenNLP、scikit-learn等; 5. 熟悉多种AI框架(如TensorFlow、Pytorch、Keras),具备较强的开源技术集成能力者优先; 6. 具有较好的逻辑表达能力、良好的团队合作精神和高度的责任心。
-
岗位职责: 1、参与媒体专业领域大语言模型的研究、构建与迭代,负责预训练和对齐阶段特定算法模块的建设工作; 2、逐步加深和丰富基座大模型的智能体能力,为智能体应用建设沉淀技术与经验; 3、负责RAG、Agent等通用应用流程框架设计实现和策略制定; 4、探索大模型能力在业务流程中的提效应用和面向C端用户的产品能力输出。 岗位要求: 1、硕士及以上学历,计算机、智能科学、数学专业方向出身; 2、具备非常扎实的算法功底,熟练掌握NLP的常用技术手段,有工业界内容理解和生成成熟实战经验; 3、拥有大规模语言模型的预训练和微调经验,熟练掌握常见开源模型的底层设计原理; 4、对于Dense架构和MoE架构大模型的设计实现细节有充分掌握,并有一定的实际操作经验; 5、良好的逻辑思维能力和数据敏感度,优秀的分析和解决问题能力,对挑战性问题充满激情,自驱有追求,具备较强的攻坚能力。
-
我们正在寻找一位经验丰富的推荐算法工程师,负责推荐算法的框架搭建和工程效能优化工作。该职位将主要负责TF和PyTorch框架在推荐系统中的应用,包括离线和在线训练优化、模型部署及生成式模型的实时预估。我们期待您的加入,共同推动公司的技术和业务发展。 岗位职责: 1. 离线Pipeline优化:优化TF框架的离线和在线逻辑,提升TF集群训练和GPU训练的离线pipeline资源利用率和效率。 2. 模型Serving:探索并搭建基于TF/PyTorch的Serving方案,实现推荐场景下的近线和在线预估流程。 3. 生成式模型应用:落地推荐领域的生成式模型预估框架,负责对应的训练加速和实时预估的部署。 4. 算法研发:优化工程效率,提升推荐系统的性能和效果。构建通用有效的工具和框架。 任职要求: 1. 教育背景:计算机科学相关专业本科及以上学历。 2. 工作背景:推荐算法领域3年以上的工作经验。 3. 技术经验: - 熟悉TF/PyTorch框架,具备离线Pipeline和在线Serving相应的部署和优化能力。 - 熟悉GPU加速相关技术,能够优化大规模数据的训练速度。 - 具有生成式模型应用经验,能够实现生成式模型的训练加速和实时预估部署。 4. 编程能力:精通Python编程,熟悉C++/Java或其他编程语言者优先。 5. 工程经验:具备扎实的工程能力,有大型推荐系统开发和优化经验者优先。 6. 沟通能力:良好的团队合作精神,具备跨团队沟通协作的能力。 7. 创新精神:热爱技术创新,乐于接受挑战,并能够持续学习和应用新技术。 优先条件: 1. 互联网公司推荐系统的相关工作经验。 2. 在推荐算法、机器学习或深度学习领域有高质量论文或专利。 3. 开源项目贡献经验。
-
资深算法工程师(国际支付风控方向) 岗位职责: 1.支付风险识别与防控 ●负责跨境电商业务中支付风险的全面识别与防控,重点治理欺诈(盗卡、盗账户 友好欺诈)等方面风险,确保支付全链路安全可靠。 ●利用数据分析和机器学习技术,精确识别支付风险,建立有效的风控模型体系。 2.风控模型全链路管理 ●主导支付风控模型的全链路开发与上线工作,包括需求调研、风险探索、方案设计、模型开发、系统集成、部署上线、效果评估、持续优化和监控预警。 ●与产品、工程、业务团队紧密合作,确保风控模型精准全面覆盖业务场景,并能够及时应对市场变化。 3.前沿技术应用与创新 ●深入探索全球各大市场的新型支付作弊行为,利用多模态大数据进行风险评估与预测。 ●应用异常检测、集成学习、强化学习、序列模型、图模型、大规模预训练模型等前沿技术,提升风险识别的准确率和召回率。 职位要求: 1.经验与教育背景 ●拥有3年以上风控算法研发经验,对跨境支付业务有系统性理解和实际风控经验。 ●计算机科学、数据科学、统计学或相关专业,本科及以上学历。 2.技术能力 ●精通Python编程,熟悉主流机器学习框架(如TensorFlow、PyTorch等),具备优秀的算法实现和优化能力。 ●深入理解大规模数据挖掘、机器学习、分布式高性能计算等技术,能够高效处理海量数据,能够应对高QPS低延时模型需求。 3.业务敏感性与团队合作 ●对风控领域充满热情,具备敏锐的业务洞察力,熟悉全球各主要区域常见支付欺诈风险模式,能够迅速适应和响应业务需求的变化。 ●具备强烈的责任心和主观能动性,能够独立完成任务,同时拥有优秀的团队合作精神和沟通能力,推动项目顺利进行。
-
岗位职责: 1. 研发人工智能领域的相关算法实现, 可以选择NLP、语音、图像领域其中之一。 2. 结合行内业务需求,设计实现方案,并基于大模型进行场景开发和模型的微调优化。 3. 跟踪和关注大模型推理训练领域的前沿技术和趋势,进行技术调研和应用。 岗位要求 1.计算机、电子通信、数学等相关专业,硕士及以上学历或优秀本科生; 2.具备优秀的编程能力,熟练使用Python/C/C++的其中一种; 3.对机器学习、深度学习等人工智能领域有兴趣,有相关领域课题研究或项目经验者优先;; 4.有期刊论文发表或计算机相关竞赛经验者优先; 5. 出色的问题分析及解决能力,能自我驱动,持续面对挑战,积极主动、踏实勤奋。
-
25k-45k·15薪 经验3-5年 / 硕士科技金融,人工智能服务 / 上市公司 / 500-2000人岗位职责: 1.结合信贷业务场景,对内部海量数据进行清洗与深度挖掘,提炼稳定且有效的数据产品,为金融机构信贷业务搭建全生命周期模型提供数据基础; 2.使用Python开发并优化逻辑回归、XGBoost、深度神经网络等机器学习模型,结合信贷金融业务属性和场景,提升模型算法的表现,完善金融机构的全场景化模型组合; 3. 全程参与数据产品的研发,包括需求分析、市场分析、产品设计、产品性能测试、上线推广等环节,确保产品的高效交付和稳定运行; 4.积极研究和跟进前沿大数据建模理论和技术,将其有效融入产品开发中,以维持并提升产品的技术竞争力; 5.针对不同信贷金融机构的业务特色,设计定制化的风控和营销解决方案。运用大数据和算法技术,为合作伙伴提供精准的业务支持和服务。 岗位要求: 1.计算机、数学、统计、金融、物理、信息工程等数理专业硕士及以上学历; 2.具有3年及以上银行、消金或者互联网金融等相关的风险模型、数据挖掘相关工作经验,对信贷业务流程和系统有深刻理解; 3.精通风险管理和营销模型的构建方法,熟练掌握统计分析和数据挖掘技术。具备强烈的数据敏感性,能够独立发现并解决问题,具有自我激励和驱动的能力; 4.熟练应用Python、R等数据挖掘工具,掌握逻辑回归、XGBoost等机器学习算法,并了解深度学习和前沿算法的发展趋势; 5.具备良好的团队合作精神,优秀的沟通能力和项目管理技能,能够在快节奏的工作环境中有效推动项目进展。