-
感知算法工程师 岗位职责: 1. 负责深度相机、激光雷达、线激光等多种传感器融合的数据处理与标定算法开发; 2. 对公司已有感知算法进行优化和改进,提高整体感知算法的鲁棒性; 3. 负责与移动机器人规控、软件等模块的系统集成和调试工作; 4. 追踪并改进前沿感知算法模块,包括但不限于物体检测,场景分割,目标追踪等。 5. 负责感知方案的方案制定、架构设计和性能优化并落地产品。 任职资格: 1. 计算机、机器人、自动化、信息工程等相关专业本科及以上学历; 2. 精通多传感器标定,点云数据预处理,滤波和优化算法包括卡尔曼滤波、非线性优化等; 3. 熟练掌握 C/C++ ,掌握PCL、OpenCV及计算机视觉中的基本算法,具有4年以上的相关项目开发经验 ; 4. 熟悉机器人/自动驾驶常用中间件应用,如ROS、Cyberrt、AutoSar等; 5. 强烈的进取心和求知欲,较强的沟通能力和团队合作意识,具备强烈的责任心,较强的较强的沟通能力和团队合作
-
岗位要求: 教育背景要求:本科及以上 技能要求:良好的需求理解力、问题分析、归纳能力 、跨领域协调能力 知识要求: 1、优秀的洞察及架构能力,熟悉数字化经验及4A架构; 2、熟悉Transformer、增量预训练、SFT、RAG、Agent技术栈,有大规模集群上实践经验者优先; 3、对技术有热情,具备良好的沟通表达能力和团队精神,自驱力强; 岗位职责: 1、对齐供应链业务战略,联合业务领域识别业务挑战及应用机会点,制定AI应用战略及演进路标,规划并落地AI应用的系统及解决方案架构,牵引应用架构及技术架构的演进; 2、聚焦供应链的核心高价值业务场景,通过构建AI应用,赋能供应方案设计、供应资源决策、订单履行管理等,优化供应链作业及运作模式,提升工作效率、质量与客户/伙伴供应服务满意度。
-
职位描述: 1.负责NR无线通信的链路级及系统级仿真平台功能开发,及平台功能优化; 2.负责物理层及高层算法设计开发,优化及验证; 3. 支持标准化方案推动,进行相关方案的开发及仿真验证; 职位要求: 1. 通信,电子,地磁场与微波,计算机,数学等相关专业,本科及以上学历; 2.熟悉通信,数字信号处理理论; 3.熟练掌握C,Matlab语言;
-
职位描述: (1)负责计算机视觉、深度学习相关的技术系统与产品的研发工作; (2)调研前沿CV算法,并实现; (3)负责运动目标检测跟踪相关算法研发,包括车辆检测、舰船检测、飞机检测等; (4)负责神经网络优化,包括压缩剪枝、量化等; (5)负责前沿跟踪算法研究与优化,包括KCF、ECO、GOTURN等。 任职要求: (1)硕士(或本科且不少于三年工作经验)及以上学历,有计算机视觉或机器学习研究背景; (2)熟悉C/C++,熟悉python/matlab,熟悉常用深度学习框架; (3)有深度学习相关科研经历优先; (4)有计算机视觉(目标检测、跟踪、识别)方向应用经验者优先; (5)在机器学习、计算机视觉等领域有优秀论文发表记录者优先。
-
风控算法工程师(无感知人机方向) 岗位职责: 1、负责业务各场景(比如登录、注册、反爬等)的机器流量的风险水位防控、以及机器流量的感知、识别和监控工作。 2、熟悉各终端(PC、Wap、H5、Android、Ios)SDK埋点体系设计,并能从算法优化的角度对埋点体系给予相关建议和需求提取。 3、负责机器流量的实时对抗工作,根据各设备终端埋点采集到的海量设备信息和行为信息等构建人机识别模型、进行模型线上部署,不断迭代与优化人机算法,提升机器流量识别能力。 4、探索人机识别场景的算法模式,例如半监督/无监督/自监督/小样本学习/强化学习/对比学习等,并且将之应用到反作弊业务场景中。 职位要求: 1、3年以上反欺诈&风控、反作弊算法研发经历,计算机相关专业本科及以上学历,算法基础扎实; 2、熟悉黑灰产作弊手法,有成功的黑灰产对抗经验,负责并有效治理过某类反作弊问题,比如批量注册、群控等; 3、熟悉 Python/Scala/Java ,具备优秀的编码能力,至少熟悉一种常见的机器学习/深度学习平台; 4、熟悉大规模数据挖掘、机器学习、自然语言处理、分布式计算等相关技术,有行为序列挖掘相关经验优先; 5、有钻研精神,对安全风控有热情,主观能动性强,能适应快速变化的业务需求,具备良好的团队合作精神和沟通技巧。
-
资深算法工程师(国际支付风控方向) 岗位职责: 1.支付风险识别与防控 ●负责跨境电商业务中支付风险的全面识别与防控,重点治理欺诈(盗卡、盗账户 友好欺诈)等方面风险,确保支付全链路安全可靠。 ●利用数据分析和机器学习技术,精确识别支付风险,建立有效的风控模型体系。 2.风控模型全链路管理 ●主导支付风控模型的全链路开发与上线工作,包括需求调研、风险探索、方案设计、模型开发、系统集成、部署上线、效果评估、持续优化和监控预警。 ●与产品、工程、业务团队紧密合作,确保风控模型精准全面覆盖业务场景,并能够及时应对市场变化。 3.前沿技术应用与创新 ●深入探索全球各大市场的新型支付作弊行为,利用多模态大数据进行风险评估与预测。 ●应用异常检测、集成学习、强化学习、序列模型、图模型、大规模预训练模型等前沿技术,提升风险识别的准确率和召回率。 职位要求: 1.经验与教育背景 ●拥有3年以上风控算法研发经验,对跨境支付业务有系统性理解和实际风控经验。 ●计算机科学、数据科学、统计学或相关专业,本科及以上学历。 2.技术能力 ●精通Python编程,熟悉主流机器学习框架(如TensorFlow、PyTorch等),具备优秀的算法实现和优化能力。 ●深入理解大规模数据挖掘、机器学习、分布式高性能计算等技术,能够高效处理海量数据,能够应对高QPS低延时模型需求。 3.业务敏感性与团队合作 ●对风控领域充满热情,具备敏锐的业务洞察力,熟悉全球各主要区域常见支付欺诈风险模式,能够迅速适应和响应业务需求的变化。 ●具备强烈的责任心和主观能动性,能够独立完成任务,同时拥有优秀的团队合作精神和沟通能力,推动项目顺利进行。
-
1、方向一:广告推荐 负责广告召回模块的优化,通过数据挖掘、自然语言处理等技术,在保证广告相关性的同时提升广告召回率,进而提升系统变现能力。 2、方向二:广告点击率/转化率预估 负责CTR/CVR模型优化相关工作,在特征工程、模型结构、机制策略等方面进行持续探索优化,提升广告的点击率和转化率,进而提升系统变现能力以及客户投放效果。 3、方向三:广告反作弊 持续优化反作弊相关的算法策略,以有效识别作弊行为挽回客户损失;建立并完善作弊行为预警及监控系统,提升反作弊系统的事前预警能力以及事后case分析的效率。 1、 计算机相关专业大学本科及以上学历; 2、 精通C/C++/Java/python语言之一; 3、 熟悉分布式计算平台,有海量数据处理经验; 4、 熟悉常用的数据挖掘/机器学习/自然语言处理算法,并有一定的实践经验; 5、 优秀的分析问题解决问题的能力,具备搜索/推荐/广告业务经验者优先。
-
岗位职责: 1、负责行车场景周视感知算法设计和开发工作,包括高速/城区等场景中的障碍物、车道线等感知任务的模型及后处理算法开发工作 2、负责泊车场景环视感知算法设计和开发工作,包括室内、室外等场景中的车位、障碍物等感知任务的模型及后处理算法开发工作 3、负责自动驾驶领域大模型等前沿技术研发工作 任职要求: 1、计算机、汽车工业、机器人、电子或相关专业; 2、熟悉当前主流的深度学习算法,包括但不限于BEV感知、无监督训练、大模型、目标检测、图像分割、多任务学习、多传感融合等领域; 3、熟悉常用的深度学习框架,如PyTorch、TensorFlow、MxNet等,要求至少对其中一种框架较为熟练; 4、至少精通Python或C++编程,熟悉常用的视觉算法库如numpy/opencv等,了解常用的传统图像处理算法。 5、具备针对车载端侧平台检测/分割等算法设计经验和落地能力,有针对自动驾驶场景落地障碍物、车道线、红绿灯、freespace等算法经验者优先。 6、具有正确的价值观、内在驱动力;具有较强的学习能力、沟通能力和团队协作能力;能主动解决问题;能够承受较强的工作压力。
-
1. 负责设备端语音降噪唤醒、识别、语义理解问题排查及优化研发,包括结合海尔语音设备整机结构进行语音效果问题分析、算法调优,设备端调试及问题修复; 2. 侧重于语音设备端降噪增强、识别、语义理解类算法研发及应用创新,推进海尔语音系统架构优化升级,推进语音技术在海尔产业落地,打造标准化解决方案;
-
25k-45k·15薪 经验3-5年 / 硕士科技金融,人工智能服务 / 上市公司 / 500-2000人岗位职责: 1.结合信贷业务场景,对内部海量数据进行清洗与深度挖掘,提炼稳定且有效的数据产品,为金融机构信贷业务搭建全生命周期模型提供数据基础; 2.使用Python开发并优化逻辑回归、XGBoost、深度神经网络等机器学习模型,结合信贷金融业务属性和场景,提升模型算法的表现,完善金融机构的全场景化模型组合; 3. 全程参与数据产品的研发,包括需求分析、市场分析、产品设计、产品性能测试、上线推广等环节,确保产品的高效交付和稳定运行; 4.积极研究和跟进前沿大数据建模理论和技术,将其有效融入产品开发中,以维持并提升产品的技术竞争力; 5.针对不同信贷金融机构的业务特色,设计定制化的风控和营销解决方案。运用大数据和算法技术,为合作伙伴提供精准的业务支持和服务。 岗位要求: 1.计算机、数学、统计、金融、物理、信息工程等数理专业硕士及以上学历; 2.具有3年及以上银行、消金或者互联网金融等相关的风险模型、数据挖掘相关工作经验,对信贷业务流程和系统有深刻理解; 3.精通风险管理和营销模型的构建方法,熟练掌握统计分析和数据挖掘技术。具备强烈的数据敏感性,能够独立发现并解决问题,具有自我激励和驱动的能力; 4.熟练应用Python、R等数据挖掘工具,掌握逻辑回归、XGBoost等机器学习算法,并了解深度学习和前沿算法的发展趋势; 5.具备良好的团队合作精神,优秀的沟通能力和项目管理技能,能够在快节奏的工作环境中有效推动项目进展。
-
我们正在寻找一位经验丰富的推荐算法工程师,负责推荐算法的框架搭建和工程效能优化工作。该职位将主要负责TF和PyTorch框架在推荐系统中的应用,包括离线和在线训练优化、模型部署及生成式模型的实时预估。我们期待您的加入,共同推动公司的技术和业务发展。 岗位职责: 1. 离线Pipeline优化:优化TF框架的离线和在线逻辑,提升TF集群训练和GPU训练的离线pipeline资源利用率和效率。 2. 模型Serving:探索并搭建基于TF/PyTorch的Serving方案,实现推荐场景下的近线和在线预估流程。 3. 生成式模型应用:落地推荐领域的生成式模型预估框架,负责对应的训练加速和实时预估的部署。 4. 算法研发:优化工程效率,提升推荐系统的性能和效果。构建通用有效的工具和框架。 任职要求: 1. 教育背景:计算机科学相关专业本科及以上学历。 2. 工作背景:推荐算法领域3年以上的工作经验。 3. 技术经验: - 熟悉TF/PyTorch框架,具备离线Pipeline和在线Serving相应的部署和优化能力。 - 熟悉GPU加速相关技术,能够优化大规模数据的训练速度。 - 具有生成式模型应用经验,能够实现生成式模型的训练加速和实时预估部署。 4. 编程能力:精通Python编程,熟悉C++/Java或其他编程语言者优先。 5. 工程经验:具备扎实的工程能力,有大型推荐系统开发和优化经验者优先。 6. 沟通能力:良好的团队合作精神,具备跨团队沟通协作的能力。 7. 创新精神:热爱技术创新,乐于接受挑战,并能够持续学习和应用新技术。 优先条件: 1. 互联网公司推荐系统的相关工作经验。 2. 在推荐算法、机器学习或深度学习领域有高质量论文或专利。 3. 开源项目贡献经验。
-
职位职责: 1、负责生成式智能对话场景的算法研发,基于大模型技术建设智能化的对话机器人系统; 2、探索生成式Agent对话算法,包括大模型领域知识融入、对齐、逻辑推理和SFT等任务; 3、建设基于RAG框架的智能问答系统,优化文本&多模态理解、召回、相关性、问答生成等算法; 4、对长文本/海量文本进行深度分析、构建知识图谱,针对用户对话进行抽取事件、情感分析; 5、搭建和优化检索排序、在线生成系统,提供稳定的线上服务。 职位要求: 1、本科及以上学历,优秀的代码能力,掌握常用编程语言和算法,熟悉Pytorch或TF等框架; 2、有机器学习应用经验,有大模型、RAG、智能对话、搜索等领域丰富的实战经验,在生成式大模型、Query与用户理解、召回排序、知识图谱、智能交互中一个或多个领域有深入实践; 3、熟练掌握机器学习算法原理,能熟练运用机器学习、自然语言处理、匹配技术、运筹优化、强化学习、智能生成等技术解决有挑战性的问题,有业界项目经验或顶会论文发表者优先; 4、对数据敏感度极高,有良好的逻辑思维和定义以及解决问题的能力; 5、优秀的产品和业务感知能力,责任心强,积极主动,有良好的沟通能力和团队合作能力,能够完成有挑战的目标。
-
职位职责: 1、团队涉及向多个业务方(飞书问答/Aily/豆包/coze)提供RAG相关的底层算法/算子; 2、NLU:多轮问答Query总结,Query拆解,Query意图识别,相关Query推荐; 3、召回排序:相关性向量召回,相关性排序,多因子排序(时效性、权威性、互动性); 4、LLM生成优化:Prompt调优,生成大模型SFT/RLHF; 5、索引构建:Image2Text、多模态Embedding、端侧Embedding技术、知识图谱挖掘与应用; 6、跟踪业界前沿技术的发展,探索深度学习/LLM等前沿技术的应用前景。 职位要求: 1、优秀的编码能力、数据结构和基础算法功底; 2、出色的分析问题、解决问题能力,总是能从纷繁复杂的数据中一眼看出问题本质; 3、熟悉自然语言处理的实体提取、意图识别、事件摘要、语义分析、新词发现、图文数据分类等相关任务,并有深入的实践经验; 4、熟悉深度学习的原理和实现,熟练掌握Tensorflow/Torch/Keras等至少一种深度学框架; 5、参与过推荐系统、搜索、问答等实际项目的开发,有丰富的架构设计、特征工程建设等方面经验,熟练掌握基本的召回和排序算法,并对领域前沿算法有研究; 6、责任心强,积极主动,有良好的沟通能力和团队合作能力。
-
岗位职责: 1.负责腾讯音乐集团相关产品推荐算法的设计实现与优化; 2.负责完善现有推荐系统的基础算法及并行计算框架; 3.负责音乐平台业务的基于用户/音乐特性的数据挖掘及推荐策略设计实现; 4.负责能够根据业务数据变化不断设计并调整算法策略来提升算法质量,并最终提升用户体验。 岗位要求: 1.硕士及以上学历; 2.计算机,统计,信息,数学等相关专业毕业优先; 3.扎实可靠的编程能力,精通C/C++/GO至少一门编程语言; 4.熟悉业内推荐算法及数据挖掘领域的技术热点和进展,对互联网在线音乐的推荐系统架构设计有深入了解; 5.了解Hadoop/Spark生态相关技术优先; 6.具备规模分布式数据存储与计算开发经验者优先; 7.沟通能力佳,表达能力出众者,音乐爱好者优先。
-
岗位职责: 1. 开发指标归因分析平台 2、AI大模型在各工具业务的应用场景适配等,负责基于大模型面向应用场景的算法策略组件建设 3、负责LLM、深度学习、机器学习等方向相关问题研究,跟进前沿技术动态 任职要求: 1. 计算机、通信、电子及相关专业,硕士及以上学历,3-5年工作经验 2. 熟练掌握Python语言,熟悉Tensorflow、Pytorch、Spark、Hive等技术栈 3. 具备深厚的NLP基础和前沿跟踪能力,具备大模型落地实战经验优先 4. 掌握NLP基本算法,在自然语言处理相关领域中至少一个方向有一定的实践经验,如语义检索与推荐、信息抽取、对话系统、语义理解、阅读理解、聚类、迁移学习、多模学习、低资源学习等熟悉LLM相关技术, 如transformer, prompt tuning, RLHF, langchain等,对相关技术落地有自己的理解 5. 在机器学习/NLP领域高级学术会议发表过高质量文章者 6. 有银行间债券、银行核心经营指标相关研发经验者优先