-
岗位要求: 教育背景要求:本科及以上 技能要求:良好的需求理解力、问题分析、归纳能力 、跨领域协调能力 知识要求: 1、优秀的洞察及架构能力,熟悉数字化经验及4A架构; 2、熟悉Transformer、增量预训练、SFT、RAG、Agent技术栈,有大规模集群上实践经验者优先; 3、对技术有热情,具备良好的沟通表达能力和团队精神,自驱力强; 岗位职责: 1、对齐供应链业务战略,联合业务领域识别业务挑战及应用机会点,制定AI应用战略及演进路标,规划并落地AI应用的系统及解决方案架构,牵引应用架构及技术架构的演进; 2、聚焦供应链的核心高价值业务场景,通过构建AI应用,赋能供应方案设计、供应资源决策、订单履行管理等,优化供应链作业及运作模式,提升工作效率、质量与客户/伙伴供应服务满意度。
-
职位描述: 1.负责NR无线通信的链路级及系统级仿真平台功能开发,及平台功能优化; 2.负责物理层及高层算法设计开发,优化及验证; 3. 支持标准化方案推动,进行相关方案的开发及仿真验证; 职位要求: 1. 通信,电子,地磁场与微波,计算机,数学等相关专业,本科及以上学历; 2.熟悉通信,数字信号处理理论; 3.熟练掌握C,Matlab语言;
-
工作职责 1.针对医疗领域特定问题,定义任务流程,收集或构建高质量数据集,对LLM进行微调; 2.利用提示工程、模型微调、调用工具插件等方式完成医疗领域特定应用的探索尝试; 3.尝试提升大语言模型在医疗方面的能力,包括但不限于高效训练、人工反馈对齐、多模态、可控文本生成、生成质量评估,以提升LLM性能。 任职要求 1.研究生及以上学历,计算机、电子工程、自动化控制等专业背景,有NLP的研究经验; 2.有扎实的数理基础和良好的逻辑思维能力,有深度学习算法框架使用经验; 3.良好的编程能力,熟悉Python,pytorch,linux下常用指令; 4.熟悉现有的多种大语言模型,例如llama、qwen等; 5.拥有医疗自然语言处理项目经验,或者对人工智能在医疗领域的应用有强烈兴趣; 6.有中文文本处理经验者优先,有计算机、医学、生物信息学等领域论文发表或者大赛获奖经历者优先。
-
1、方向一:广告推荐 负责广告召回模块的优化,通过数据挖掘、自然语言处理等技术,在保证广告相关性的同时提升广告召回率,进而提升系统变现能力。 2、方向二:广告点击率/转化率预估 负责CTR/CVR模型优化相关工作,在特征工程、模型结构、机制策略等方面进行持续探索优化,提升广告的点击率和转化率,进而提升系统变现能力以及客户投放效果。 3、方向三:广告反作弊 持续优化反作弊相关的算法策略,以有效识别作弊行为挽回客户损失;建立并完善作弊行为预警及监控系统,提升反作弊系统的事前预警能力以及事后case分析的效率。 1、 计算机相关专业大学本科及以上学历; 2、 精通C/C++/Java/python语言之一; 3、 熟悉分布式计算平台,有海量数据处理经验; 4、 熟悉常用的数据挖掘/机器学习/自然语言处理算法,并有一定的实践经验; 5、 优秀的分析问题解决问题的能力,具备搜索/推荐/广告业务经验者优先。
-
资深算法工程师(国际支付风控方向) 岗位职责: 1.支付风险识别与防控 ●负责跨境电商业务中支付风险的全面识别与防控,重点治理欺诈(盗卡、盗账户 友好欺诈)等方面风险,确保支付全链路安全可靠。 ●利用数据分析和机器学习技术,精确识别支付风险,建立有效的风控模型体系。 2.风控模型全链路管理 ●主导支付风控模型的全链路开发与上线工作,包括需求调研、风险探索、方案设计、模型开发、系统集成、部署上线、效果评估、持续优化和监控预警。 ●与产品、工程、业务团队紧密合作,确保风控模型精准全面覆盖业务场景,并能够及时应对市场变化。 3.前沿技术应用与创新 ●深入探索全球各大市场的新型支付作弊行为,利用多模态大数据进行风险评估与预测。 ●应用异常检测、集成学习、强化学习、序列模型、图模型、大规模预训练模型等前沿技术,提升风险识别的准确率和召回率。 职位要求: 1.经验与教育背景 ●拥有3年以上风控算法研发经验,对跨境支付业务有系统性理解和实际风控经验。 ●计算机科学、数据科学、统计学或相关专业,本科及以上学历。 2.技术能力 ●精通Python编程,熟悉主流机器学习框架(如TensorFlow、PyTorch等),具备优秀的算法实现和优化能力。 ●深入理解大规模数据挖掘、机器学习、分布式高性能计算等技术,能够高效处理海量数据,能够应对高QPS低延时模型需求。 3.业务敏感性与团队合作 ●对风控领域充满热情,具备敏锐的业务洞察力,熟悉全球各主要区域常见支付欺诈风险模式,能够迅速适应和响应业务需求的变化。 ●具备强烈的责任心和主观能动性,能够独立完成任务,同时拥有优秀的团队合作精神和沟通能力,推动项目顺利进行。
-
岗位职责: 1.深入自然语言理解(NLU)技术和多模态情绪识别技术的研发与应用。 2.从事商业领域对话机器人(Chatbot)人工智能算法研究与应用。 3.将深度学习、强化学习等最前沿的AI技术应用于人机交互的各个方面,包括:问答系统,上下文理解,知识图谱,情绪识别与应对,任务达成以及开放域对话。 4.开发开放平台,提供业内领先的人工智能与机器学习服务。 任职要求: 1. 2年左右的算法岗位工作经验,国家**本科及以上学历; 2.在机器学习、深度学习方向有较强的积累,有深度学习的项目经验,熟悉经典的算法; 3.精通至少一种开发语言,如:Java、Scala、Python等,能熟练使用SQL进行数据处理; 4.有好的自驱力和业务意识,能够主动贴近业务,挖掘业务痛点,解决业务实际问题; 5.有较强的逻辑思维能力,善于分析、归纳、解决问题; 6.能够快速掌握工作领域的业务和技术,能承受必要的工作压力; 加分项 1.自然语言理解方面有经验; 2.人工智能对话机器人算法方面有经验,有1年左右的NLP项目经验; 3.人工智能相关专业 + 学历背景好一点(国家**)
-
风控算法工程师(无感知人机方向) 岗位职责: 1、负责业务各场景(比如登录、注册、反爬等)的机器流量的风险水位防控、以及机器流量的感知、识别和监控工作。 2、熟悉各终端(PC、Wap、H5、Android、Ios)SDK埋点体系设计,并能从算法优化的角度对埋点体系给予相关建议和需求提取。 3、负责机器流量的实时对抗工作,根据各设备终端埋点采集到的海量设备信息和行为信息等构建人机识别模型、进行模型线上部署,不断迭代与优化人机算法,提升机器流量识别能力。 4、探索人机识别场景的算法模式,例如半监督/无监督/自监督/小样本学习/强化学习/对比学习等,并且将之应用到反作弊业务场景中。 职位要求: 1、3年以上反欺诈&风控、反作弊算法研发经历,计算机相关专业本科及以上学历,算法基础扎实; 2、熟悉黑灰产作弊手法,有成功的黑灰产对抗经验,负责并有效治理过某类反作弊问题,比如批量注册、群控等; 3、熟悉 Python/Scala/Java ,具备优秀的编码能力,至少熟悉一种常见的机器学习/深度学习平台; 4、熟悉大规模数据挖掘、机器学习、自然语言处理、分布式计算等相关技术,有行为序列挖掘相关经验优先; 5、有钻研精神,对安全风控有热情,主观能动性强,能适应快速变化的业务需求,具备良好的团队合作精神和沟通技巧。
-
岗位要求: 1. 熟悉计算机视觉(CV)领域的相关技术,熟练掌握Python等至少一种语言; 2.具备计算机视觉领域的项目经验,对项目的方案设计及落地实施有一定的见解; 3.了解图像处理的基本理论知识,熟悉分类、检测、分割、拼接等常见视觉任务模型,熟悉各方案的应用场景和优化方法; 4.掌握常用的算法设计,熟悉常用的算法框架,如Tensorflow、OpenCV等; 5.良好的沟通能力和团队合作能力。 岗位职责: 1.参与计算机视觉相关的项目方案设计,协助项目实施、维护和优化; 2.参与攻坚项目中与计算机视觉相关的难题,编写相应的代码; 3.自行调研计算机视觉领域的新技术,推动新技术在实际项目中的应用; 4.负责训练相关的机器学习(包括深度学习)模型。
-
1. 负责设备端语音降噪唤醒、识别、语义理解问题排查及优化研发,包括结合海尔语音设备整机结构进行语音效果问题分析、算法调优,设备端调试及问题修复; 2. 侧重于语音设备端降噪增强、识别、语义理解类算法研发及应用创新,推进海尔语音系统架构优化升级,推进语音技术在海尔产业落地,打造标准化解决方案;
-
岗位名称:搜索、推荐算法工程师 岗位职能:算法工程师 工作年限:3-5年 学历要求:硕士及以上 工作职责: 负责如下场景的模型训练以及落地 1、自然语言处理场景;任务举例:文本分类、实体识别、query 分析、分词、情感分析等; 2、搜索、推荐召回场景;任务举例:基于 Query 的召回、基于 item 的召回等; 3、搜索、推荐精排场景; 岗位需求: 1、对数据敏感,具有优秀的逻辑思维能力,善于分析问题,解决问题; 2、精通主流深度学习框架:Tensorflow、PyTorch 等; 3、深刻理解机器学习和深度学习算法原理;对 query 分析、相关性、召回模型、机器学习 排序有深刻的理解和应用经验; 4、深刻理解深度学习算法的训练,可根据不同业务场景对模型本身进行调优,精通训练数 据的构造、训练超参的调整; 5、熟悉主流 NLP 算法及推荐算法,比如:BERT 模型、DSSM、ESMM、CRF、GNN 等; 6、有复现论文模型的相关经验; 7、有深度学习部署框架(Triton、Onnx、TFServing 之一)相关业务应用的落地经验; 8、了解大数据(Spark、Hive)技术; 9、熟悉 Java,有工程落地经验者优先;
-
岗位职责: 1、负责行车场景周视感知算法设计和开发工作,包括高速/城区等场景中的障碍物、车道线等感知任务的模型及后处理算法开发工作 2、负责泊车场景环视感知算法设计和开发工作,包括室内、室外等场景中的车位、障碍物等感知任务的模型及后处理算法开发工作 3、负责自动驾驶领域大模型等前沿技术研发工作 任职要求: 1、计算机、汽车工业、机器人、电子或相关专业; 2、熟悉当前主流的深度学习算法,包括但不限于BEV感知、无监督训练、大模型、目标检测、图像分割、多任务学习、多传感融合等领域; 3、熟悉常用的深度学习框架,如PyTorch、TensorFlow、MxNet等,要求至少对其中一种框架较为熟练; 4、至少精通Python或C++编程,熟悉常用的视觉算法库如numpy/opencv等,了解常用的传统图像处理算法。 5、具备针对车载端侧平台检测/分割等算法设计经验和落地能力,有针对自动驾驶场景落地障碍物、车道线、红绿灯、freespace等算法经验者优先。 6、具有正确的价值观、内在驱动力;具有较强的学习能力、沟通能力和团队协作能力;能主动解决问题;能够承受较强的工作压力。
-
岗位职责: 1. 承担基于GPT系列或者其他开源大模型的开发和调优工作,包括训练流程搭建、指令微调、P’rompt工程以及面向下游任务的效果优化等; 2. 完成大规模预训练模型在到店业务场景中的应用落地,支持业务目标提升。 3. 紧跟业界大模型进展,探索前沿技术,解决到店业务的实际问题,包括智能问答、图文内容生成等; 4. 与其他团队密切合作,包括数据工程师、前后端工程师、产品经理等,实现高质量的产品和解决方案。 岗位基本要求: 1. 有大语言模型(LLM)预训练经验,熟悉相关技术细节和优化策略,如大规模语料收集、模型调优优化、自弱监督学习、强化学习等 2. 有小样本学习 (Few-shot learning)、提示学习(P‘rompt learning)等相关技术经验; 3. NLP相关领域3年以上经验,具有扎实的算法理论基础,熟练掌握自然语言主要算法模型,如实体识别、知识抽取等。熟悉NLP主流大模型,如ChatGPT/T5/PaLM/LLaMA/GLM等,对模型背后的原理和各自适用场景有深入的理解; 4. 有基于Tensorflow、PyTorch等深度学习框架的实战项目经验; 5. 具备较强的团队协作能力和沟通能力,有较强的学习能力和业务分析及问题解决能力。 具备以下优先: 1. 具有生成式模型训练及开发经验、信仰AIG者优先; 2. 有NLP、多模态研发背景,对QA/机器翻译/图文生成相关领域有深入理解的优先。 3. 对大规模预训练语言模型技术现状和发展趋势有深刻的理解和认知,并对相关技术有极高的热情。 4. 计算机相关专业博士优先, 发表过大模型相关研究AI顶会论文优先; 5. 具备有良好的代码开发能力,有开源项目开发经验优先。
-
职位职责: 1、通过海量用户与商家行为数据的分析挖掘,深入理解业务和机器学习技术,持续迭代算法模型与策略,识别交易场景中的各种作弊风险,提升平台的商业化收入; 2、建设模型&策略监控与归因指标体系,及时感知风险及业务的变化,持续优化调整风控方案,推动风控治理与商家生态建设。 职位要求: 1、本科及以上学历,机器学习、数学、统计学、计算机等相关专业优先; 2、具备扎实的统计学、机器学习、深度学习等理论基础及应用经验,精通SQL并熟练掌握Python; 3、逻辑思考能力强,优秀的分析问题和解决问题的能力,对解决具有挑战性问题充满激情; 4、具备良好的团队协作能力与责任心,善于跨部门沟通协作。
-
30k-50k 经验5-10年 / 本科旅游|出行 / D轮及以上 / 500-2000人我们正在寻找一名具有丰富自然语言处理(NLP)经验的算法工程师,同时需具备大模型相关的经验和知识。如果您还具备Chatbot相关的经验,那将是一个巨大的加分项。此岗位将负责开发和优化我们的AI解决方案,推动NLP和大模型技术在各类应用场景中的落地。 主要职责: 设计和优化NLP算法,提升系统的理解和生成能力。 研究和应用最新的NLP技术,解决复杂的自然语言处理问题。 开发和优化大规模机器学习和深度学习模型,提升系统性能。 与产品团队和数据科学团队紧密合作,了解业务需求并转化为技术方案。 参与大模型相关项目,推动大模型在各类应用场景中的应用。 进行数据分析和挖掘,提供数据驱动的优化建议。 编写高质量的技术文档和报告,分享研究成果和项目进展。 职位要求: 计算机科学、电子工程、数学或相关领域的本科及以上学历。 至少3年在NLP领域的工作经验。 熟悉常见的NLP技术(如分词、命名实体识别、文本分类、情感分析等)。 具有大模型相关的经验(如GPT、BERT、Transformers等)。 精通Python,熟悉TensorFlow、PyTorch等深度学习框架。 具备数据分析和处理能力,能够理解和处理大规模数据集。 良好的团队协作能力和沟通能力,能够与跨部门团队有效合作。 加分项: 有Chatbot开发和优化的实际经验。 拥有电商、金融、医疗等领域的NLP应用经验。 在学术会议或期刊发表过NLP或大模型相关论文者优先。 具有推荐系统或其他AI应用开发经验者优先。 如果你对NLP和大模型充满热情,并希望在快速发展和充满挑战的环境中成长,我们诚邀你的加入!
-
职位职责: 1、构建业界领先的AI安全大规模解决方案和架构,提升生成式AI场景下数据安全水位; 2、与跨团队业务方紧密协作,推进大模型和深度学习在细粒度数据识别的应用(比如命名实体识别、图像实例分割、文本改写); 3、研究当前最好的算法模型和策略,并应用到字节跳动大规模生产环境中; 4、团队培养和建设,跨团队、跨职能沟通协调,促进团队和合作方共赢。 职位要求: 1、硕士研究生及以上学历,计算机、统计学、人工智能和信息安全专业等相关专业,5年以上安全研发经验; 2、熟练掌握Python/C/C++语言之一,熟悉大数据处理框架和机理,有扎实的AI相关理论基础; 3、在NLP、风控算法、搜索/推荐有丰富的经验,参与过大规模数据处理项目者优先; 4、能够结合实际问题设计端到端的解决方案和架构,高效、稳定、可扩展; 5、良好沟通协调能力,喜欢有挑战的事情,务实、自驱。