• 25k-40k·14薪 经验3-5年 / 本科
    软件服务|咨询 / B轮 / 150-500人
    if (your_passions.includes(‘data’)) { switch(your_stacks) { case ‘Python’: case ‘Scala’: case ‘Natural Language Processing’: console.log(‘Join AfterShip’); break; } } 岗位职责 1、负责海外电商 SaaS 平台的 Product Intelligence 系统设计、开发和优化,赋能推荐、搜索、导购等业务场景; 2、利用 GenAI、深度学习等技术,开发和优化商品分类、属性抽取、销量预测、智能订价等算法,实现对商品信息的全方位理解和分析; 3、与产品、运营等团队紧密合作,理解业务需求,及时掌握和应用最新的业界动态,保持公司在跨境电商 SaaS 领域的技术领先地位。 岗位要求 1、本科及以上学历,三年相关算法工作经验,数学、统计学、计算机、数据挖掘、机器学习等相关专业优先;有英语听说能力,以及海外电商、SaaS 服务工作经验优先; 2、具备较好的数据敏锐度,具有缜密的逻辑思维能力、业务洞察能力、沟通表达能力; 3、具备数据挖掘、机器学习的基础理论和方法,熟悉数据挖掘领域常用算法,如 LR、聚类、W&D/DeepFM/DNN 等常用的深度学习算法; 4、在商品理解、多模态学习、内容理解方面有深入研究以及实践经历,对 GenAI 前沿进展保持关注。 加分项 1、具备开发能力,有使用 Docker、Kubernetes、AWS 或 GCP 云计算经验; 2、有写 Blog 的习惯,活跃技术社区,参与开源项目等; 3、有代码洁癖,对代码精益求精,对技术有极客热情。 为什么加入我们 1、朝阳行业:国际电商 SaaS 服务赛道,国际一线投资机构加持; 2、稳健发展:团队稳健扩张,业务规模及营收每年持续稳健增长; 3、多元文化:团队来自全球 20 多个不同城市,国际化视角、扁平化管理; 4、极客氛围:拥抱开源技术,实践敏捷开发,崇尚通过工具和自动化来解决问题; 5、特色福利:学习基金、 一对一帮带、内部商城、提供 MacBook 及可升降办公桌。
  • 35k-70k 经验3-5年 / 本科
    消费生活 / 上市公司 / 2000人以上
    岗位职责: 1、参与页面分析挖掘算法的研究与实现,通过算法策略优化页面分类模型、文本分类模型。 2、利用文本挖掘、图像理解等业界先进技术,对多模态内容进行挖掘与理解。 3、工作范围涵盖网页筛选与理解、网页与站点分类和去重、多类型非网页类多模态数据的处理和理解。 岗位基本要求: 1、计算机相关专业本科及以上相关学历,具备优秀的理解力、沟通能力和团队协作能力。 2、熟练掌握 c++/python/Java等编程语言,并且在机器学习,自然语言处理领域有扎实的理论功底和动手能力。具备优秀的逻辑思维能力和数据科学能力,在相关领域比赛中获奖优先。 3、在信息检索、自然语言处理/图像与视频理解等方面有非常扎实的理论功底,以及丰富的解决实际问题的项目经验。有信息检索相关领域工作经验优先。 4、善于学习领域前沿技术并能快速应用到实际工作当中,在自然语言处理,信息检索、计算机视觉等领域有相关学术论著优先。
  • 电商平台 / C轮 / 2000人以上
    岗位职责: 1、结合电商的业务特性,进行模型和算法创新,打造业行领先的机器学习/深度学习算法平台能力。 2、超大规模的机器学习模型优化,包括但不限于深度学习、强化学习、表征学习等,最大效率地提升电商流量效率。 岗位要求: 1、计算机及相关专业,具有扎实的算法和数据结构,优秀的问题理解能力和编码能力。 2、扎实的机器学习理论基础,具有行业常用的机器学习算法实践经验。 3、熟悉业界主流的机器学习平台,有大规模机器学习平台的研发经验者优先,有Tensorflow/PyTorch等机器学习框架使用经验者优先。 4、具有电商相关业务的算法实践经验者优先,包括但不限于推荐、广告、搜索等。 5、良好的团队合作和协调沟通能力,学习能力强,自我驱动力强。
  • 40k-60k·14薪 经验3-5年 / 硕士
    电商平台 / C轮 / 2000人以上
    岗位职责: -结合电商的业务特性,进行模型和算法创新,打造业行领先的机器学习/深度学习算法平台能力。 -超大规模的机器学习模型优化,包括但不限于深度学习、强化学习、表征学习等,最大效率地提升电商流量效率。 岗位要求: -计算机及相关专业,具有扎实的算法和数据结构,优秀的问题理解能力和编码能力。 -扎实的机器学习理论基础,具有行业常用的机器学习算法实践经验。 -熟悉业界主流的机器学习平台,有大规模机器学习平台的研发经验者优先,有Tensorflow/PyTorch等机器学习框架使用经验者优先。 -具有电商相关业务的算法实践经验者优先,包括但不限于推荐、广告、搜索等。 -良好的团队合作和协调沟通能力,学习能力强,自我驱动力强。
  • 18k-36k 经验3-5年 / 硕士
    金融业 / 上市公司 / 2000人以上
    工作职责 : 1. 运用机器学习相关技术,对海量数据进行处理和分析,挖掘相关信息,分析关键因素,进行标签体系建立、模型开发、模型优化、算法评估等工作,以提升业务智能化为目标,助力保险业数字化转型; 2. 负责决策相关模型的设计、开发与上线效果分析等,包括但不限于理赔模型、风险模型、用户增长模型等; 3. 负责对模型相关的数据进行分析,包括数据清洗、数据挖掘、特征工程、数据建模等,以提高业务智能化的准确性与效率; 4. 通过对数据的敏锐洞察,深入挖掘业务场景的潜在价值和业务需求,通过技术创新推动业务智能化的提升; 5. 跟进机器学习相关技术的业界发展,并合理运用到实际业务场景中; 任职资格 : 1. 计算机、数学、统计学及电子信息相关专业硕士及以上学历,3年及以上工作经验; 2. 在经典机器学习、深度学习、自然语言处理或运筹优化等一个或多个领域有扎实理论基础或丰富研发经验,曾在广告推荐、营销转化、用户增长等某一领域有相关工作经验者优先; 3. 熟悉Java/Python/C++中的一种或多种编程语言,熟悉大数据处理技术(Hadoop/Spark/Hive),善于学习和应用业界领先数据架构和技术处理实际策略类问题; 4. 良好的逻辑思维能力,在复杂业务场景下能够分解和抽象问题,提供优秀、完整、可行的解决方案; 5. 对解决具体挑战性问题充满激情,较强的责任心和主动性,良好的沟通协作和抗压能力。
  • 30k-60k 经验3-5年 / 本科
    内容资讯,短视频 / D轮及以上 / 2000人以上
    职位职责: 1、分析和理解大规模结构化和非结构化数据, 利用机器学习、NLP、大模型、图算法和迁移学习等,开发高性能分类器、预测模型和算法, 构建知识图谱; 2、针对复杂业务场景,协同多个关联部门,完成业务需求所需的AI算法模型或数据挖掘方案的开发交付和验证,达成预定的业务指标; 3、探索和应用前沿的机器学习、NLP、大模型技术,并将其应用于业务场景。 职位要求: 1、本科及以上相关专业学历,3年以上相关领域从业经验; 2、具备机器学习相关算法的扎实基础,包括但不限于NLP、深度学习、图模型、大模型等特定领域的全面学习和实践经验; 3、具备对业务数据建模的能力,精通相关实验和原型验证所需的技术栈、特征挖掘、AI算法模型、数理统计算法等相关技术领域; 4、具备实际操作能力,熟练掌握至少一种框架,如TensorFlow或PyTorch,包括其训练和部署的具体细节。熟悉常用的机器学习和深度学习算法,以及基本的网络模型结构和文本表示方法; 5、出色的编码技能,熟练掌握至少一种编程语言,如Python、Go或C++,并具备算法和数据结构的扎实基础; 6、具备优秀的团队协作和沟通技巧。
  • 20k-40k·15薪 经验3-5年 / 本科
    金融 / 上市公司 / 2000人以上
    岗位职责: 1、负责挖掘与分析各类业务数据建立用户画像,并通过算法模型提升风控和反欺诈能力,以数据动风险决策,并提升决策效率; 2、挖掘业务需求,基于对机器学习的理解,定义不同场景下的数据解决方案,并选择有效的算法解决可能遇到的数据、场景相关问题,提升模型的性能和稳定性; 3、配合开发人员和大数据工程师完成模型的上线运行,并进行模型的监控、维护和调整; 4、跟踪模型或方案产生的业务影响,与各业务部门紧密合作,推动数据化决策。 任职资格: 1、**本科及以上学历,统计学、数学、经济学、金融等相关专业,并在数据挖掘相关工作上有1-3年工作经验,金融信贷行业的工作经验更佳。 2、扎实的机器学习和数据挖掘理论和技术基础; 3、有一定的PYTHON 和 SQL使用能力,熟悉常用数据统计、分析和建模方法; 4、较好的团队合作精神和沟通能力; 5、优秀的分析问题和解决问题的能力,对解决具有挑战性的问题充满激情; 6、有一定英文沟通能力。
  • 20k-40k 经验不限 / 本科
    内容资讯,短视频 / D轮及以上 / 2000人以上
    职位职责: 1、负责字节跳动财经反作弊的通用算法建设,为支付、电商、消金的营销等反作弊场景提供支持; 2、支持风险数据梳理和通用特征建设; 3、对多类风险问题进行算法调研和新算法开发,形成算法库,为算法平台提供支持; 4、建设自动对抗系统,为多产品线提供通用解决方案; 5、利用海量电商内容,结合机器学习、深度学习等算法,优化电商社区生态各个指标。 职位要求: 1、2年以上算法研发经历,计算机相关专业本科及以上学历,算法基础扎实; 2、熟悉Scala/Python/Go,具备优秀的编码能力,至少熟悉一种常见的机器学习/深度学习平台; 3、熟悉大规模数据挖掘、机器学习、自然语言处理、分布式计算等相关技术,并具备1年以上相关工作经验; 4、有图计算、知识图谱相关经验优先; 5、有大规模数据挖掘经验者优先;在互联网广告技术、NLP、图像识别、反欺诈&风控、反作弊等方面有工作经验者优先。
  • 40k-60k·15薪 经验5-10年 / 硕士
    科技金融,人工智能服务 / 上市公司 / 500-2000人
    岗位职责: 1、独立完成建模方案设计、模型开发及部署,运用各类算法开发包括营销响应、流失预警等营销模型及反欺诈规则、申请评分、额度模型、行为评分、催收评分等风险模型,并对现有模型进行优化完善; 2、配合商务进行客户需求沟通、方案讲解及咨询支持,对客户提出的业务痛点提供有效的解决方案及量化的决策建议; 3、充分了解客户业务端审批流程及风险表现,结合用户特征,制定或优化贷前、贷中及贷后风控策略;为客户提供用户分层筛选、差异化营销手段等策略建议; 4、根据客户需求,独立带领项目成员进行咨询项目的实施,包括方案设计、项目计划安排、实施过程管理、项目质量把控、报告撰写及交付汇报; 5、其他创新探索工作:深入挖掘用户行为序列数据,设计特征维度框架及指标体系结构,进行特征开发;探索如图算法等创新算法实践及应用,并进行充分工程验证后推广应用在已有业务中。 岗位要求: 1、硕士及以上学历,数学、统计学、计算机等相关专业优先;6年以上银行、持牌消金、头部互金、金融科技公司模型及策略相关工作经验; 2、至少能熟练使用Python/Spark/R其中一种分析及建模工具,数据挖掘及建模经验丰富,能够有效利用LR、XGBoost、LightGBM等机器学习算法以及神经网络等深度学习算法构建特征与模型; 3、对零售信贷市场、信贷产品形态有一定的认知度,对全生命周期风控管理流程有深刻的理解,并掌握各环节的风控要点及风控策略制定逻辑; 4、具备独立思考的能力,逻辑严谨,对数据敏感,善于发现. 探索并解决问题,自我驱动力强; 5、具备较强的抗压能力,踏实、勤奋、细心,愿意并乐于接受新尝试、新挑战,探索创新主动性强。
  • 20k-25k 经验5-10年 / 本科
    数据服务 / 不需要融资 / 50-150人
    岗位职责: 1、数据收集与预处理:数据收集:负责从各种数据源(如数据库、文件系统、网络等)中收集数据,确保数据的全面性和多样性。数据预处理:对数据进行清洗、整理、转换和归约等操作,以提高数据的质量和可用性。这包括处理缺失值、异常值、重复值等问题,以及将数据转换为适合挖掘的格式。 2、数据挖掘与分析:数据挖掘:运用统计学、机器学习和数据挖掘技术,对预处理后的数据进行深入分析和挖掘,以发现模式和趋势。这包括分类、聚类、关联规则挖掘、回归分析、时间序列分析等多种方法。数据分析:通过数据挖掘技术发现数据中的隐藏模式、关联规则和趋势,提取有用的信息和知识。这些分析结果可以用于业务预测、市场趋势分析、用户行为研究等多个方面。 3、模型构建与优化:模型构建:根据业务需求和数据特点,选择合适的机器学习算法或深度学习模型,构建数据分析模型。这些模型可以用于分类、预测、推荐等多个场景。模型优化:对构建的模型进行评估和优化,提高模型的准确性和性能。这包括调整模型参数、选择更合适的算法、优化特征工程等方面。 4、数据可视化与报告:数据可视化:利用数据可视化工具(如Tableau、Power BI等)将挖掘和分析的结果以直观、易懂的方式呈现出来。这有助于用户更好地理解数据和分析结果,发现数据中的规律和趋势。报告撰写:撰写数据挖掘和分析报告,向决策者和相关人员解释和说明分析结果,并提出相应的建议和决策支持。这些报告可以包括数据摘要、分析结果、模型性能评估等多个部分。 任职要求: 1、教育程度:计算机、数学、统计学相关专业;本科及以上学历。 2、工作经验:具备5年及以上专业工作经验。 3、知识:熟悉常用数据统计、分析和建模方法;熟练掌握各类算法包括分类算法、聚类算法、关联规则挖掘、异常监测等;熟练使用Python、Sql等语言; 熟悉大数据技术栈和工具,如Hadoop、Flink、Kafka等。 4、技能:熟悉数据作业流程,包括指标体系定义、数据清洗ETL、数据分析挖掘、数据可视化与展示;熟悉各种类型的统计方法,比如概率分布、相关性、回归、随机过程等;能够使用机器学习算法建立数学模型;熟悉常用大数据计算引擎flink;熟悉TensorFlow、PyTorch等深度学习框架。 5、核心能力素质:分析判断能力、解决问题能力、执行能力、沟通能力、文字能力、抗压能力、业务知识、工作主动性、责任意识、团队协作、严谨细致、服务意识、敬业精神、正直诚信。
  • 50k-100k·15薪 经验5-10年 / 硕士
    360
    信息安全 / 上市公司 / 2000人以上
    1、方向一:广告推荐 负责广告召回模块的优化,通过数据挖掘、自然语言处理等技术,在保证广告相关性的同时提升广告召回率,进而提升系统变现能力。 2、方向二:广告点击率/转化率预估 负责CTR/CVR模型优化相关工作,在特征工程、模型结构、机制策略等方面进行持续探索优化,提升广告的点击率和转化率,进而提升系统变现能力以及客户投放效果。 3、方向三:广告反作弊 持续优化反作弊相关的算法策略,以有效识别作弊行为挽回客户损失;建立并完善作弊行为预警及监控系统,提升反作弊系统的事前预警能力以及事后case分析的效率。 1、 计算机相关专业大学本科及以上学历; 2、 精通C/C++/Java/python语言之一; 3、 熟悉分布式计算平台,有海量数据处理经验; 4、 熟悉常用的数据挖掘/机器学习/自然语言处理算法,并有一定的实践经验; 5、 优秀的分析问题解决问题的能力,具备搜索/推荐/广告业务经验者优先。
  • 35k-60k·16薪 经验3-5年 / 硕士
    居住服务 / 上市公司 / 2000人以上
    工作职责: 1. 使用大数据处理架构、机器学习模型进行海量数据挖掘,筛选高质量数据用于大语言模型训练; 2. 开发基于Hive、Spark、Slurm、K8s的大数据文本处理工具; 3. 负责大语言模型的量化,提升推理效率和稳定性。 任职资格: 1. 计算机、数学、统计、NLP等相关专业硕士及以上学历; 2. 有大数据处理、数据挖掘、NLP等相关项目两年以上工作经验; 3. 熟悉常用NLP算法,如GPT、BERT、FastText等; 4. 精通Linux、Hive、Spark、K8s,熟练使用Pytorch; 5. 具备扎实的专业基础和项目经验,良好的沟通能力和团队合作,认真负责、主动积极。
  • 30k-60k·18薪 经验5-10年 / 硕士
    金融 / 不需要融资 / 2000人以上
    岗位职责: 1.研发大规模语言模型(LLM)的预训练、持续训练、SFT、RLHF等技术; 2.研发多模态的大模型(LMM)预训练、SFT、 RLHF等技术; 3.研发基于大模型的ChatBot、检索增强、Code、Longchain等下游应用 岗位要求: 1.具有硕士/博士学位,专业背景包括自然语言处理、机器学习、数据挖掘、人工智能等相关领域。 2.熟练掌握深度学习框架如Tensorflow、Pytorch等,具备扎实的编程基础和独立的算法实现能力,熟悉langchain并具备相关项目经验者优先考虑。 3.具备大规模语言模型(LLM)的实操经验,有参与大型模型预训练、SFT、RLHF等项目的经验者优先。 4.深入研究和实践自然语言处理、文本生成等领域,并有相关经验。 5.具备良好的逻辑分析能力和数理基础,对算法原理及应用有深入理解。有较强的自学能力和解决问题的能力,对前沿创新技术有热衷钻研的态度。
  • 35k-60k·16薪 经验3-5年 / 硕士
    居住服务 / 上市公司 / 2000人以上
    工作职责: - 基于机器学习的广告竞价排序机制优化,优化用户体验/排序效果 - 广告冷启动策略以及转化率预估,以及售卖机制设计,定价策略优化等 - 运用数据挖掘和机器学习方法,深入挖掘海量房产数据,负责房屋价格预估、客源意愿挖掘、智能匹配等算法 - 参与特征工程、召回、排序等模型持续优化和研究,配合工程持续优化线上模型,持续提升产品体验和商业价值 任职资格: - 两年以上数据挖掘与机器学习应用经验,有推荐、广告/营销、搜索、最优化问题等领域丰富的实战经验 - 对深度模型和常用机器学习算法(如:NN、树模型、LR、FM等)有较好的理解及实践经验 - 具备很强的工程及编码能力,能独立实现和调优算法,熟练掌握Python、java、Shell、Go、Scala等中的一种语言 - 有海量数据处理和并行计算开发经验,熟悉Hadoop、Storm、Spark等技术者优先 - 责任心强,有快速学习的能力;目标导向,善于结合具体业务场景,灵活的分析与解决有挑战性的问题 - 有个人技术博客、活跃在各技术社区、有数据挖掘/机器学习相关paper的更佳
  • 25k-30k 经验5-10年 / 硕士
    物联网 / 上市公司 / 2000人以上
    职责描述: 1、针对实际业务需求,深入分析现有算法与模型,给出有效解决方案,并在现有算法基础上进行新算法及模型的开发与迭代。 2、设计和优化应用算法,并协助完成应用业务解决方案设计及算法设计,为业务目标实现提供算法支持和验证。 3、负责知识图谱、用户画像、感知推荐相关的模型构造,统计建模、数据挖掘、机器学习等方法建立数据模型以解决具体业务的实际问题; 任职要求: 1、精通统计学、数据挖掘,机器学习算法,具有独立编程能力,深入理解各种常用基本机器学习算法; 2、精通python或java,熟练使用一种以上数据分析工具,熟悉linux、sql; 3、熟悉机器学习建模流程,有推荐,预测等应用相关经验优先 4、掌握知识图谱、NLP、推荐等某一方向的机器学习、深度学习模型构建分析技术; 5、计算机科学,统计学,数学,数据挖掘,信息技术等相关专业,3年以上工作经验