-
任职资格: 1.研究生学历,计算机科学与技术、软件工程、人工智能相关专业; 2.3 年以上算法研发、项目管理工作经验; 3.精通人工智能算法,特别是在深度学习、强化学习、大模型(自然语言)学习领域有深入研究,并有丰富的实战经验; 4.熟练掌握 Python、C++ 编程语言,精通大数据处理技术,具备扎实的算法设计与分析能力; 5.具备良好的沟通表达能力及团队协作精神,能够准确理解客户需求,有效地协调各方资源,推动项目顺利进行; 6.具有较强的文档撰写能力,能够根据客户需求和项目特点,撰写技术方案、项目建议书、等技术类文档; 7.优秀的逻辑思维能力和问题解决能力,能够独立分析和解决复杂的技术问题; 8.优先考虑:拥有军工项目实际工作经验、项目管理经验或熟悉大型知识图谱构建与维护者。 岗位职责: 1.负责人工智能算法的设计、开发和优化,包括但不限于深度学习、强化学习、自然语言处理等领域; 2.对现有算法进行持续优化,提升模型性能,包括准确率、效率、稳定性等方面; 3.进行算法验证和测试,确保算法的可靠性和稳定性; 4.跟踪学习最新的研发技术,将前沿技术转化为实际应用; 5.与客户对接,理解客户需求,撰写设计文档、技术方案、项目报告、解决方案等,为客户或部门提供技术支持,解决技术难题; 6.负责或协助进行项目规划、进度安排以及资源调配,依个人能力而定; 7.遵守相关保密协议和规定,确保项目信息安全等。
-
工作职责: 工作职责 参与公司招聘平台的NLP文本数据及用户行为数据的挖掘工作,包括知识图谱、query理解、用户画像、智能问答、文本分类等方向的算法研发;并且持续探索大模型技术在产业应用中的落地 1. 参与招聘领域知识图谱的算法策略研发,包括海量数据挖掘、实体和实体关系抽取、新词发现等,构建招聘领域行业化标签体系、知识图谱等,支撑业务策略衍化及产品迭代; 2. 参与招聘领域文本分类、岗位识别等基础NLP算法的研发工作,提升平台信息内容的结构化水平,辅助平台生态建设 3. 参与平台内用户画像的构建研发,基于海量的用户行为数据,对用户进行建模,优化画像模型效果,精准刻画用户偏好 4. 参与平台内搜索体系的优化构建,负责搜索引擎的文本语义分析和内容理解处理工作,包括但不限于query的解析、联想、纠错等。 5. 紧跟大模型技术的发展步伐,探索招聘领域中大模型的应用落地,承担大模型预训练和调优等工作,如prompt设计、fine-tuning、模型蒸馏等,实现标题/亮点自动提取生成、职位自动生成、简历文本组织优化等技术,并应用于招聘业务实现部分环节的智能化,提高业务效率。 任职资格: 任职资格 1. 计算机、数学等相关专业本科以上学历; 2. 两年以上自然语言处理相关方向研发经验; 3. 对自然语言处理技术体系和应用场景有深刻的理解,熟悉自然语言处理、深度学习领域开源的算法和工具包; 4. 熟悉主流的文本生成算法的原理,有结合业务的探索经验以及常见的大模型落地实践经验的优先; 5. 熟练掌握TensorFlow、pytorch等深度学习框架、有较强的算法复现能力;熟悉Linux平台编程环境,精通Java/C/C++/Python/Scala语言中的一种,具备Hadoop、Spark、Hive等实际工作经验优先 6. 具有优秀的分析和解决实际问题的能力和态度,有创业的激情。
-
职位职责: 1、负责机器学习系统推理架构和产品的设计开发,支持火山方舟大模型平台和机器学习平台的产品业务; 2、负责深度模型推理任务为核心的在线架构设计与优化,充分利用各种异构计算(GPU、CPU、其他异构硬件)、存储(各种云存储)、网络(VPC、RDMA)等资源,构建多租环境下的稳定性、观测体系,实现高并发、高吞吐的大规模在线系统; 3、负责推理系统的产品化落地,打造稳定、可观测、体验一流的公有云推理平台。 职位要求: 1、熟练掌握Linux环境下的Go/Java/Python等1-2种语言; 2、具备扎实的计算机科学功底和编程能力,熟悉常见算法和数据结构,具有良好的编程习惯; 3、熟悉至少一种主流的机器学习框架(TensorFlow / PyTorch 或其他自研框架); 4、熟悉 Kubernetes 架构和生态,有丰富的云原生机器学习系统实践和开发经验,对在线服务治理、 部署架构有深入理解和落地经验; 5、掌握分布式系统原理,参与过大规模分布式系统的设计、开发和维护; 6、有优秀的逻辑分析能力,能够对业务逻辑进行合理的抽象和拆分; 7、有强烈的工作责任心,较好的学习能力、沟通能力和自驱力,能够快速的响应和行动; 8、有良好的工作文档习惯,及时按要求撰写更新工作流程及技术文档。 加分项: 1、有在线GPU推理系统的工程架构落地经验,熟悉常见的在线推理优化手段(Batch、量化、分布式推理等),熟悉GPU、大模型相关软硬件技术栈; 2、熟悉公有云推理产品架构,对该领域用户画像和用户故事有深入理解,有打造***产品的热情; 3、有以下某一方向领域的经验:CUDA,RDMA,AI Infrastructure,HW/SW Co-Design,High Performance Computing,ML Hardware Architecture (GPU, Accelerators, Networking),ML for System,Distributed Storage。
-
职位职责: 1、负责机器学习系统资源调度的设计和开发,支持火山方舟大模型平台和机器学习平台的产品业务; 2、负责多机房、多集群环境下的,各种异构计算(GPU、CPU、其他异构硬件)、存储(各种云存储)、网络(VPC、RDMA)等资源的最优化编排调度,在严格的多租隔离环境下,支持各种离线训练、在线推理等负载场景的调度需求,并实现整体资源的合理化、最大化利用。 职位要求: 1、熟练掌握Linux环境下的Go/Java/Python等1-2种语言; 2、具备扎实的计算机科学功底和编程能力,熟悉常见算法和数据结构,具有良好的编程习惯; 3、熟悉至少一种主流的机器学习框架(TensorFlow / PyTorch 或其他自研框架); 4、熟悉 Kubernetes 架构和生态,熟悉 Docker/Containerd/Kata 等容器技术,有丰富的云原生机器学习系统实践和开发经验; 5、掌握分布式系统原理,参与过大规模分布式系统的设计、开发和维护; 6、有优秀的逻辑分析能力,能够对业务逻辑进行合理的抽象和拆分; 7、有强烈的工作责任心,较好的学习能力、沟通能力和自驱力,能够快速的响应和行动; 8、有良好的工作文档习惯,及时按要求撰写更新工作流程及技术文档。 加分项: 1、有大规模集群在离线资源调度相关工作的实践经验,对K8S/Volcano/Yarn/Mesos等一到多个开源项目的调度实现有源码级的理解,熟悉容器化、轻量级虚拟机等相关技术; 2、熟悉常见调度算法,对多租户Quota治理、抢占、弹性、碎片、潮汐、混部、QoS等一到多个调度问题有深入理解和实践经验,具备较强的解决复杂问题的分析和建模能力,有GPU相关调度经验; 3、有以下某一方向领域的经验:CUDA,RDMA,AI Infrastructure,HW/SW Co-Design,High Performance Computing,ML Hardware Architecture (GPU, Accelerators, Networking),ML for System,Distributed Storage。
-
职位描述 1、负责贝壳一站式机器学习平台的设计研发与迭代改进,为业务提供稳定易用、高性能、高性价比的解决方案; 2、业内机器学习系统与平台前沿技术进展跟进与调研、落地; 3、参与模型训练,模型服务,模型管理,资源调度等机器学习相关问题的开发。 任职要求 1、计算机基础知识与编程基本功扎实,熟悉Go/Python/C++至少一种; 2、参与过大规模分布式系统的开发和维护; 3、良好的沟通能力和团队协作精神,严谨的工作态度与高质量意识 ; 4、善于学习新的知识,动手能力强,有进取心。 加分项: 1、有CUDA C/C++编程经验,有GPU并行计算编程基础(NCCL)经验优先; 2、了解分布式系统、容器相关领域技术,熟悉Kubernetes/docker等优先; 3、熟悉机器学习框架(Tensorflow/Pytorch/Jax)优先。
-
工作职责 1. 负责研究适用于医疗应用场景的统计和机器学习算法(如图神经网络、多模态数据融合、时序分析等),提高AI在疾病预测、保险理赔、医保控费、健康服务推荐等方面的能力; 2. 参与医疗AI产品的研发,与产品团队、开发团队合作完成创新技术向应用成果的转化; 3. 参与和外部研究机构的学术合作,共同研发创新AI算法; 4. 基于上述工作发表AI领域**论文,申请发明专利。 任职要求 1. 计算机、统计学、数学、自动化、生物信息学等相关专业硕士或以上学历; 2. 对人工智能和机器学习算法有浓厚的兴趣和深入的研究经验; 3. 具有丰富的算法设计与编程开发经验,熟练掌握Python或R编程; 4. 具有良好的沟通能力与多学科团队协作能力; 5. 在人工智能领域**期刊、会议上发表过学术论文者优先; 6. 在医疗人工智能领域有相关研究经验者优先; 7. 对商业保险、社会医保(如临床路径、DRGs)体系有相关经验者优先。
-
岗位职责: 1、负责搜狐新闻相关的算法研发、优化工作,运用策略和算法手段为用户带来更好的产品体验; 2、参与推荐系统的全链路开发与优化,包括但不局限于召回、排序、混排等; 3、通过对数据的敏锐洞察,深入挖掘产品潜在价值和需求; 4、追踪推荐领域的前沿技术,并进行模型创新,合理的运用在业务中; 任职要求: 1、推荐/搜索/广告/机器学习相关背景,有 1~3年工作经验; 2、有大规模推荐算法和系统研发经验者优先,对推荐算法有热情、乐于学习、思考和创新; 3、关注技术前沿进展,对解决具有挑战性问题充满激情; 4、较好的团队合作精神,较强的沟通能力和自我驱动力。
-
岗位职责: 1、参与页面分析挖掘算法的研究与实现,通过算法策略优化页面分类模型、文本分类模型。 2、利用文本挖掘、图像理解等业界先进技术,对多模态内容进行挖掘与理解。 3、工作范围涵盖网页筛选与理解、网页与站点分类和去重、多类型非网页类多模态数据的处理和理解。 岗位基本要求: 1、计算机相关专业本科及以上相关学历,具备优秀的理解力、沟通能力和团队协作能力。 2、熟练掌握 c++/python/Java等编程语言,并且在机器学习,自然语言处理领域有扎实的理论功底和动手能力。具备优秀的逻辑思维能力和数据科学能力,在相关领域比赛中获奖优先。 3、在信息检索、自然语言处理/图像与视频理解等方面有非常扎实的理论功底,以及丰富的解决实际问题的项目经验。有信息检索相关领域工作经验优先。 4、善于学习领域前沿技术并能快速应用到实际工作当中,在自然语言处理,信息检索、计算机视觉等领域有相关学术论著优先。
-
1、方向一:广告推荐 负责广告召回模块的优化,通过数据挖掘、自然语言处理等技术,在保证广告相关性的同时提升广告召回率,进而提升系统变现能力。 2、方向二:广告点击率/转化率预估 负责CTR/CVR模型优化相关工作,在特征工程、模型结构、机制策略等方面进行持续探索优化,提升广告的点击率和转化率,进而提升系统变现能力以及客户投放效果。 3、方向三:广告反作弊 持续优化反作弊相关的算法策略,以有效识别作弊行为挽回客户损失;建立并完善作弊行为预警及监控系统,提升反作弊系统的事前预警能力以及事后case分析的效率。 1、 计算机相关专业大学本科及以上学历; 2、 精通C/C++/Java/python语言之一; 3、 熟悉分布式计算平台,有海量数据处理经验; 4、 熟悉常用的数据挖掘/机器学习/自然语言处理算法,并有一定的实践经验; 5、 优秀的分析问题解决问题的能力,具备搜索/推荐/广告业务经验者优先。
-
职位描述 1、负责AI算法的工程化落地,搭建从离线训练到在线服务的整个闭环服务平台; 2、根据需求完成实时推荐系统、实时特征计算、离线训练平台等系统的架构设计、工程实现及迭代优化; 3、能够根据不同的业务需求,灵活快速地完成具有挑战性的项目; 职位要求 1、计算机及相关专业本科及以上学历,具备2年及以上服务端开发经验; 2、扎实的计算机系统知识,掌握Golang编程语言,同时熟悉Python编程语言者优先; 3、熟练应用MySQL等关系数据库技术,熟练应用Redis缓存技术;熟悉Linux系统环境,能熟练使用Linux命令完成日常工作; 4、具有高性能、高可用的复杂业务系统开发经验,熟悉分布式、缓存、消息等机制优先; 5、具有Docker、Kubernetes、Istio等相关深度使用和开发经验者优先; 6、了解Kafka/Hive/Spark/Flink等大数据生态圈技术,具有相关大数据开发经验优先;有机器学习(tensorflow serving) 相关知识优先; 7、具备优秀的逻辑思维能力,对解决挑战性问题充满热情,有强烈的求知欲,善于学习新事物; 8、具有良好的沟通能力、团队合作精神和执行力,重视生产效率,研发质量。
-
工作内容: 我们正在寻找一位AI算法应用工程师,加入我们的技术团队。该职位将负责开发和优化我们的基于LLM的大模型AI应用,包括但不限于基于大模型的AI搜索、协同办公搜索推荐、企业级文档搜索。以及,财务和人资领域等智能化应用,面试间AI、财务AI等内容。理想的候选人应具备强大的算法背景,能够设计和实现复杂的搜索相关性算法、排序算法和意图理解模型,同时具备出色的工程实现能力。 主要职责: 1、设计、开发和优化高效、可扩展的搜索算法和推荐系统,提升搜索相关性和用户体验。 2、深入理解用户需求,通过意图理解和用户行为分析,不断优化搜索结果的准确性和个性化推荐。 3、与数据科学家合作,利用机器学习和深度学习技术,开发和维护基于大模型的AI搜索算法。 4、负责搜索系统的架构设计和性能优化,确保系统的高效运行和稳定性。 5、编写高质量的代码,进行代码审查,确保软件质量和系统安全。 跟踪最新的搜索算法和机器学习技术发展,将创新技术应用到实际项目中。 任职资格: 1、有钉钉、飞书等协同办公领域搜索或者AI开发经验者优先考虑。 2、硕士及以上学历,计算机科学、人工智能或相关领域。具有LLM大模型AI应用经验者优先考虑,比如基于大模型进行finetune以及人类反馈强化学习经验者优先考虑。 3、至少3年以上搜索算法或推荐系统开发经验,具有在大型搜索引擎项目中的实战经验者优先,有深度RAG经验者以及text2sql、text2api等经验者优先考虑。 4、深入理解搜索相关性算法、排序算法、意图理解等核心技术,有成功实现复杂搜索系统的经验。 5、精通Java编程语言,具备良好的软件工程实践经验,熟悉系统设计和架构。 6、熟悉机器学习算法和工具,有使用深度学习框架(如TensorFlow或PyTorch)解决实际问题的经验。 7、良好的团队合作精神,强烈的责任心和创新意识,能够在快速变化的环境中适应和学习。
-
我们正在寻找一位经验丰富的推荐算法工程师,负责推荐算法的框架搭建和工程效能优化工作。该职位将主要负责TF和PyTorch框架在推荐系统中的应用,包括离线和在线训练优化、模型部署及生成式模型的实时预估。我们期待您的加入,共同推动公司的技术和业务发展。 岗位职责: 1. 离线Pipeline优化:优化TF框架的离线和在线逻辑,提升TF集群训练和GPU训练的离线pipeline资源利用率和效率。 2. 模型Serving:探索并搭建基于TF/PyTorch的Serving方案,实现推荐场景下的近线和在线预估流程。 3. 生成式模型应用:落地推荐领域的生成式模型预估框架,负责对应的训练加速和实时预估的部署。 4. 算法研发:优化工程效率,提升推荐系统的性能和效果。构建通用有效的工具和框架。 任职要求: 1. 教育背景:计算机科学相关专业本科及以上学历。 2. 工作背景:推荐算法领域3年以上的工作经验。 3. 技术经验: - 熟悉TF/PyTorch框架,具备离线Pipeline和在线Serving相应的部署和优化能力。 - 熟悉GPU加速相关技术,能够优化大规模数据的训练速度。 - 具有生成式模型应用经验,能够实现生成式模型的训练加速和实时预估部署。 4. 编程能力:精通Python编程,熟悉C++/Java或其他编程语言者优先。 5. 工程经验:具备扎实的工程能力,有大型推荐系统开发和优化经验者优先。 6. 沟通能力:良好的团队合作精神,具备跨团队沟通协作的能力。 7. 创新精神:热爱技术创新,乐于接受挑战,并能够持续学习和应用新技术。 优先条件: 1. 互联网公司推荐系统的相关工作经验。 2. 在推荐算法、机器学习或深度学习领域有高质量论文或专利。 3. 开源项目贡献经验。
-
职位描述: 1. 自动驾驶多模态(Camera&Radar&Lidar) 感知处理和优化,包括感知信息的预处理,多模态融合,置信度估计等; 2. 研究先进的多模态感知算法,例如点云+图像的多模态前融合感知、learning-based多模态处理等; 3. 与上下游模块沟通,反馈、承接量产问题,打造量产数据闭环。 职位要求: 1. 扎实的C++开发能力,至少熟悉一种数据分析语言; 2. 有多目标跟踪、多模态融合、深度学习等相关经验; 3. 计算机,信号处理,数学,机器学习,机器人,自动驾驶或相关专业优先; 4. 良好的沟通能力,积极的自主学习态度,对工作认真负责; 5. 具备Radar/Lidar感知处理经验者优先。
-
职位描述 1. 将独立感知模块的输出统一并进行融合,得到适合后续模块的表示。 2. 设计系统和完善的算法与传感器失效检测模块 职位要求 1、熟悉基于滤波和优化的状态估计算法,并可以灵活运用解决实际问题; 2、良好的编程能力,熟悉python, c++,掌握常见的算法和数据结构知识。 加分项 1、熟悉计算机视觉中多视角几何知识; 2、熟悉传统统计机器学习知识,如概率图模型等,并有项目实践经验; 3、参加kaggle比赛获得前十名者; 4、ACM/ICPC、CCPC、NOI、IOI等计算机/信息学竞赛获奖经历。
-
岗位职责: - 负责AI大模型相关算法的设计与实现 - 利用算法改善微博用户产品体验 岗位要求: - 2年以上工作经验,有大型互联网行业从业经验优佳; - 机器学习、计算机、数学、统计学等相关专业本科及以上学历; - 在机器学习、数据挖掘、信息检索、推荐系统、计算广告等一个或多个领域有扎实的理论知识 - 熟练掌握常用深度学习框架,如Pytorch、TensorFlow等; - 熟悉Python/C++/Java中的一种或多种编程语言 - 熟悉Linux/Unix系统; - 熟悉Hadoop/Spark/Hive - 良好的逻辑思维能力,在复杂业务场景下能够分解和抽象问题,提供优秀、完整、可行的解决方案; - 工作认真,细心,有条理;积极性高,求知欲强;具有较强的沟通能力及团队合作精神 具备以下条件优先考虑: - 良好的英文文档及论文的阅读能力 - 气象专业或者熟悉天气大模型及原理,如Graphcast,华为盘古等