-
岗位职责: 1、参与页面分析挖掘算法的研究与实现,通过算法策略优化页面分类模型、文本分类模型。 2、利用文本挖掘、图像理解等业界先进技术,对多模态内容进行挖掘与理解。 3、工作范围涵盖网页筛选与理解、网页与站点分类和去重、多类型非网页类多模态数据的处理和理解。 岗位基本要求: 1、计算机相关专业本科及以上相关学历,具备优秀的理解力、沟通能力和团队协作能力。 2、熟练掌握 c++/python/Java等编程语言,并且在机器学习,自然语言处理领域有扎实的理论功底和动手能力。具备优秀的逻辑思维能力和数据科学能力,在相关领域比赛中获奖优先。 3、在信息检索、自然语言处理/图像与视频理解等方面有非常扎实的理论功底,以及丰富的解决实际问题的项目经验。有信息检索相关领域工作经验优先。 4、善于学习领域前沿技术并能快速应用到实际工作当中,在自然语言处理,信息检索、计算机视觉等领域有相关学术论著优先。
-
职位职责: 1、负责字节跳动财经反作弊的通用算法建设,为支付、电商、消金的营销等反作弊场景提供支持; 2、支持风险数据梳理和通用特征建设; 3、对多类风险问题进行算法调研和新算法开发,形成算法库,为算法平台提供支持; 4、建设自动对抗系统,为多产品线提供通用解决方案; 5、利用海量电商内容,结合机器学习、深度学习等算法,优化电商社区生态各个指标。 职位要求: 1、2年以上算法研发经历,计算机相关专业本科及以上学历,算法基础扎实; 2、熟悉Scala/Python/Go,具备优秀的编码能力,至少熟悉一种常见的机器学习/深度学习平台; 3、熟悉大规模数据挖掘、机器学习、自然语言处理、分布式计算等相关技术,并具备1年以上相关工作经验; 4、有图计算、知识图谱相关经验优先; 5、有大规模数据挖掘经验者优先;在互联网广告技术、NLP、图像识别、反欺诈&风控、反作弊等方面有工作经验者优先。
-
1、方向一:广告推荐 负责广告召回模块的优化,通过数据挖掘、自然语言处理等技术,在保证广告相关性的同时提升广告召回率,进而提升系统变现能力。 2、方向二:广告点击率/转化率预估 负责CTR/CVR模型优化相关工作,在特征工程、模型结构、机制策略等方面进行持续探索优化,提升广告的点击率和转化率,进而提升系统变现能力以及客户投放效果。 3、方向三:广告反作弊 持续优化反作弊相关的算法策略,以有效识别作弊行为挽回客户损失;建立并完善作弊行为预警及监控系统,提升反作弊系统的事前预警能力以及事后case分析的效率。 1、 计算机相关专业大学本科及以上学历; 2、 精通C/C++/Java/python语言之一; 3、 熟悉分布式计算平台,有海量数据处理经验; 4、 熟悉常用的数据挖掘/机器学习/自然语言处理算法,并有一定的实践经验; 5、 优秀的分析问题解决问题的能力,具备搜索/推荐/广告业务经验者优先。
-
岗位职责: 1.负责腾讯音乐集团相关产品推荐算法的设计实现与优化; 2.负责完善现有推荐系统的基础算法及并行计算框架; 3.负责音乐平台业务的基于用户/音乐特性的数据挖掘及推荐策略设计实现; 4.负责能够根据业务数据变化不断设计并调整算法策略来提升算法质量,并最终提升用户体验。 岗位要求: 1.硕士及以上学历; 2.计算机,统计,信息,数学等相关专业毕业优先; 3.扎实可靠的编程能力,精通C/C++/GO至少一门编程语言; 4.熟悉业内推荐算法及数据挖掘领域的技术热点和进展,对互联网在线音乐的推荐系统架构设计有深入了解; 5.了解Hadoop/Spark生态相关技术优先; 6.具备规模分布式数据存储与计算开发经验者优先; 7.沟通能力佳,表达能力出众者,音乐爱好者优先。
-
资深算法工程师(国际支付风控方向) 岗位职责: 1.支付风险识别与防控 ●负责跨境电商业务中支付风险的全面识别与防控,重点治理欺诈(盗卡、盗账户 友好欺诈)等方面风险,确保支付全链路安全可靠。 ●利用数据分析和机器学习技术,精确识别支付风险,建立有效的风控模型体系。 2.风控模型全链路管理 ●主导支付风控模型的全链路开发与上线工作,包括需求调研、风险探索、方案设计、模型开发、系统集成、部署上线、效果评估、持续优化和监控预警。 ●与产品、工程、业务团队紧密合作,确保风控模型精准全面覆盖业务场景,并能够及时应对市场变化。 3.前沿技术应用与创新 ●深入探索全球各大市场的新型支付作弊行为,利用多模态大数据进行风险评估与预测。 ●应用异常检测、集成学习、强化学习、序列模型、图模型、大规模预训练模型等前沿技术,提升风险识别的准确率和召回率。 职位要求: 1.经验与教育背景 ●拥有3年以上风控算法研发经验,对跨境支付业务有系统性理解和实际风控经验。 ●计算机科学、数据科学、统计学或相关专业,本科及以上学历。 2.技术能力 ●精通Python编程,熟悉主流机器学习框架(如TensorFlow、PyTorch等),具备优秀的算法实现和优化能力。 ●深入理解大规模数据挖掘、机器学习、分布式高性能计算等技术,能够高效处理海量数据,能够应对高QPS低延时模型需求。 3.业务敏感性与团队合作 ●对风控领域充满热情,具备敏锐的业务洞察力,熟悉全球各主要区域常见支付欺诈风险模式,能够迅速适应和响应业务需求的变化。 ●具备强烈的责任心和主观能动性,能够独立完成任务,同时拥有优秀的团队合作精神和沟通能力,推动项目顺利进行。
-
岗位职责: 1、数据收集与预处理:数据收集:负责从各种数据源(如数据库、文件系统、网络等)中收集数据,确保数据的全面性和多样性。数据预处理:对数据进行清洗、整理、转换和归约等操作,以提高数据的质量和可用性。这包括处理缺失值、异常值、重复值等问题,以及将数据转换为适合挖掘的格式。 2、数据挖掘与分析:数据挖掘:运用统计学、机器学习和数据挖掘技术,对预处理后的数据进行深入分析和挖掘,以发现模式和趋势。这包括分类、聚类、关联规则挖掘、回归分析、时间序列分析等多种方法。数据分析:通过数据挖掘技术发现数据中的隐藏模式、关联规则和趋势,提取有用的信息和知识。这些分析结果可以用于业务预测、市场趋势分析、用户行为研究等多个方面。 3、模型构建与优化:模型构建:根据业务需求和数据特点,选择合适的机器学习算法或深度学习模型,构建数据分析模型。这些模型可以用于分类、预测、推荐等多个场景。模型优化:对构建的模型进行评估和优化,提高模型的准确性和性能。这包括调整模型参数、选择更合适的算法、优化特征工程等方面。 4、数据可视化与报告:数据可视化:利用数据可视化工具(如Tableau、Power BI等)将挖掘和分析的结果以直观、易懂的方式呈现出来。这有助于用户更好地理解数据和分析结果,发现数据中的规律和趋势。报告撰写:撰写数据挖掘和分析报告,向决策者和相关人员解释和说明分析结果,并提出相应的建议和决策支持。这些报告可以包括数据摘要、分析结果、模型性能评估等多个部分。 任职要求: 1、教育程度:计算机、数学、统计学相关专业;本科及以上学历。 2、工作经验:具备5年及以上专业工作经验。 3、知识:熟悉常用数据统计、分析和建模方法;熟练掌握各类算法包括分类算法、聚类算法、关联规则挖掘、异常监测等;熟练使用Python、Sql等语言; 熟悉大数据技术栈和工具,如Hadoop、Flink、Kafka等。 4、技能:熟悉数据作业流程,包括指标体系定义、数据清洗ETL、数据分析挖掘、数据可视化与展示;熟悉各种类型的统计方法,比如概率分布、相关性、回归、随机过程等;能够使用机器学习算法建立数学模型;熟悉常用大数据计算引擎flink;熟悉TensorFlow、PyTorch等深度学习框架。 5、核心能力素质:分析判断能力、解决问题能力、执行能力、沟通能力、文字能力、抗压能力、业务知识、工作主动性、责任意识、团队协作、严谨细致、服务意识、敬业精神、正直诚信。
-
风控算法工程师(无感知人机方向) 岗位职责: 1、负责业务各场景(比如登录、注册、反爬等)的机器流量的风险水位防控、以及机器流量的感知、识别和监控工作。 2、熟悉各终端(PC、Wap、H5、Android、Ios)SDK埋点体系设计,并能从算法优化的角度对埋点体系给予相关建议和需求提取。 3、负责机器流量的实时对抗工作,根据各设备终端埋点采集到的海量设备信息和行为信息等构建人机识别模型、进行模型线上部署,不断迭代与优化人机算法,提升机器流量识别能力。 4、探索人机识别场景的算法模式,例如半监督/无监督/自监督/小样本学习/强化学习/对比学习等,并且将之应用到反作弊业务场景中。 职位要求: 1、3年以上反欺诈&风控、反作弊算法研发经历,计算机相关专业本科及以上学历,算法基础扎实; 2、熟悉黑灰产作弊手法,有成功的黑灰产对抗经验,负责并有效治理过某类反作弊问题,比如批量注册、群控等; 3、熟悉 Python/Scala/Java ,具备优秀的编码能力,至少熟悉一种常见的机器学习/深度学习平台; 4、熟悉大规模数据挖掘、机器学习、自然语言处理、分布式计算等相关技术,有行为序列挖掘相关经验优先; 5、有钻研精神,对安全风控有热情,主观能动性强,能适应快速变化的业务需求,具备良好的团队合作精神和沟通技巧。
-
岗位职责: 1、负责挖掘与分析各类业务数据建立用户画像,并通过算法模型提升风控和反欺诈能力,以数据动风险决策,并提升决策效率; 2、挖掘业务需求,基于对机器学习的理解,定义不同场景下的数据解决方案,并选择有效的算法解决可能遇到的数据、场景相关问题,提升模型的性能和稳定性; 3、配合开发人员和大数据工程师完成模型的上线运行,并进行模型的监控、维护和调整; 4、跟踪模型或方案产生的业务影响,与各业务部门紧密合作,推动数据化决策。 任职资格: 1、**本科及以上学历,统计学、数学、经济学、金融等相关专业,并在数据挖掘相关工作上有1-3年工作经验,金融信贷行业的工作经验更佳。 2、扎实的机器学习和数据挖掘理论和技术基础; 3、有一定的PYTHON 和 SQL使用能力,熟悉常用数据统计、分析和建模方法; 4、较好的团队合作精神和沟通能力; 5、优秀的分析问题和解决问题的能力,对解决具有挑战性的问题充满激情; 6、有一定英文沟通能力。
-
职位职责: 1、分析和理解大规模结构化和非结构化数据, 利用机器学习、NLP、大模型、图算法和迁移学习等,开发高性能分类器、预测模型和算法, 构建知识图谱; 2、针对复杂业务场景,协同多个关联部门,完成业务需求所需的AI算法模型或数据挖掘方案的开发交付和验证,达成预定的业务指标; 3、探索和应用前沿的机器学习、NLP、大模型技术,并将其应用于业务场景。 职位要求: 1、本科及以上相关专业学历,3年以上相关领域从业经验; 2、具备机器学习相关算法的扎实基础,包括但不限于NLP、深度学习、图模型、大模型等特定领域的全面学习和实践经验; 3、具备对业务数据建模的能力,精通相关实验和原型验证所需的技术栈、特征挖掘、AI算法模型、数理统计算法等相关技术领域; 4、具备实际操作能力,熟练掌握至少一种框架,如TensorFlow或PyTorch,包括其训练和部署的具体细节。熟悉常用的机器学习和深度学习算法,以及基本的网络模型结构和文本表示方法; 5、出色的编码技能,熟练掌握至少一种编程语言,如Python、Go或C++,并具备算法和数据结构的扎实基础; 6、具备优秀的团队协作和沟通技巧。
-
工作职责: 1. 使用大数据处理架构、机器学习模型进行海量数据挖掘,筛选高质量数据用于大语言模型训练; 2. 开发基于Hive、Spark、Slurm、K8s的大数据文本处理工具; 3. 负责大语言模型的量化,提升推理效率和稳定性。 任职资格: 1. 计算机、数学、统计、NLP等相关专业硕士及以上学历; 2. 有大数据处理、数据挖掘、NLP等相关项目两年以上工作经验; 3. 熟悉常用NLP算法,如GPT、BERT、FastText等; 4. 精通Linux、Hive、Spark、K8s,熟练使用Pytorch; 5. 具备扎实的专业基础和项目经验,良好的沟通能力和团队合作,认真负责、主动积极。
-
职责描述: 1、 负责自然语言理解NLP算法研究及应用场景的业务需求落地,应用场景包括不限于文本表示、文本计算、文本分类、命名实体、关键词提取、知识库等主流需求; 2、 负责自然语言理解NLP垂直领域或应用场景需求的研发如知识库建设,包括文本序列标注、句法结构与语义分析、多轮对话等算法的研发工作; 3、 跟踪国内外自然语言理解NLP、信息检索IR的最新及前沿算法进展,并预研成果择优应用于相应产品之中。 任职要求: 1、 硕士及以上学历,计算机、自然语言理解、数据挖掘、模式识别、智能科学与技术、软件工程、机器学习和深度学习相关专业; 2、 熟练掌握C/C++、Python、JAVA至少一种计算机编程语言,具备较强代码编写能力; 3、 至少掌握Pytorch/Tensorflow/Theano/Keras其中一种框架设计原理和运用,掌握CNN/RNN/LSTM/图神经网络等主流神经网络模型应用; 4、 具有垂直应用领域案如智能对话、知识库和信息检索其中一个或多个研究方向的项目落地或应用场景实践经历; 5、 具有良好的团队合作意识和学习能力,擅长解决问题与分析问题,热爱自然语言理解技术工作研发; 6、 在国际顶会如ACL和NIPS,或权威期刊发表过论文者优先,或有知名自然语言处理技术企业工作经历者优先考虑。
-
岗位职责: 1、独立完成建模方案设计、模型开发及部署,运用各类算法开发包括营销响应、流失预警等营销模型及反欺诈规则、申请评分、额度模型、行为评分、催收评分等风险模型,并对现有模型进行优化完善; 2、配合商务进行客户需求沟通、方案讲解及咨询支持,对客户提出的业务痛点提供有效的解决方案及量化的决策建议; 3、充分了解客户业务端审批流程及风险表现,结合用户特征,制定或优化贷前、贷中及贷后风控策略;为客户提供用户分层筛选、差异化营销手段等策略建议; 4、根据客户需求,独立带领项目成员进行咨询项目的实施,包括方案设计、项目计划安排、实施过程管理、项目质量把控、报告撰写及交付汇报; 5、其他创新探索工作:深入挖掘用户行为序列数据,设计特征维度框架及指标体系结构,进行特征开发;探索如图算法等创新算法实践及应用,并进行充分工程验证后推广应用在已有业务中。 岗位要求: 1、硕士及以上学历,数学、统计学、计算机等相关专业优先;6年以上银行、持牌消金、头部互金、金融科技公司模型及策略相关工作经验; 2、至少能熟练使用Python/Spark/R其中一种分析及建模工具,数据挖掘及建模经验丰富,能够有效利用LR、XGBoost、LightGBM等机器学习算法以及神经网络等深度学习算法构建特征与模型; 3、对零售信贷市场、信贷产品形态有一定的认知度,对全生命周期风控管理流程有深刻的理解,并掌握各环节的风控要点及风控策略制定逻辑; 4、具备独立思考的能力,逻辑严谨,对数据敏感,善于发现. 探索并解决问题,自我驱动力强; 5、具备较强的抗压能力,踏实、勤奋、细心,愿意并乐于接受新尝试、新挑战,探索创新主动性强。
-
工作职责 1. 项目管理及交付能力:负责部门模型策略类开发项目,包括整体项目管理、模型开发、模型管理、模型优化; 2. 数据算法能力:负责部门算法相关的设计和调优 ,参与部门产品开发与优化,并具备协助完成部门automatic pipeline; 3. 保险需求落地能力:和商务、运营、研发等团队深度合作,将业务需求转化为技术可落地方案,完成实际项目技术需求分析与转化 任职资格: 1. 硕士及以上学历,3年以上机器学习建模项目经验,应用数学、物理、统计、计算机与算法相关专业 2. 有机器学习、模式识别 、数据挖掘多个实际项目经验,理解NLP、Graph基础概念和常用算法 3. 有较强的python建模能力,能够独立搭建算法框架和建立复杂机器学习模型 4. 具备一定的英语交流与阅读能力 加分项: 1. 有保险风控建模领域,风控大数据挖掘的项目经验优先 2. 有过kaggle等建模大赛得奖者优先 3. 有过海外留学工作经验者优先
-
职责描述: 1、针对实际业务需求,深入分析现有算法与模型,给出有效解决方案,并在现有算法基础上进行新算法及模型的开发与迭代。 2、设计和优化应用算法,并协助完成应用业务解决方案设计及算法设计,为业务目标实现提供算法支持和验证。 3、负责知识图谱、用户画像、感知推荐相关的模型构造,统计建模、数据挖掘、机器学习等方法建立数据模型以解决具体业务的实际问题; 任职要求: 1、精通统计学、数据挖掘,机器学习算法,具有独立编程能力,深入理解各种常用基本机器学习算法; 2、精通python或java,熟练使用一种以上数据分析工具,熟悉linux、sql; 3、熟悉机器学习建模流程,有推荐,预测等应用相关经验优先 4、掌握知识图谱、NLP、推荐等某一方向的机器学习、深度学习模型构建分析技术; 5、计算机科学,统计学,数学,数据挖掘,信息技术等相关专业,3年以上工作经验
-
工作职责: 1.负责大规模在线广告的精排和粗排模型优化,提升广告CTR/CVR模型的预估精度; 2.参与搜狐广告业务由传统模型向深度学习模型迭代进程; 3.深入进行数据挖掘分析建模,构筑用户画像和行业广告特征体系,落地拿到业务结果; 4.从广告主反馈或者效果评测,发现定位系统和算法不足,和产品运营同学一起落地解决方案,改进相关算法并推动实现; 5.追踪业界前沿技术,结合业务需求特点,探索创新前沿算法并应用于实际业务。 任职资格: 1.*****本科及以上学历,计算机或软件工程相关专业,3年及以上算法经验; 2.具备扎实的编程能力,熟悉Linux开发环境,熟练掌握Java/Scala/Python中的一种语言,熟悉Spark/SQL/Hadoop、Redis等常用语言和工具,Java代码能力优秀者优先; 3.具备机器学习和深度学习理论基础和实践经验,熟悉协同过滤/LR/FM等传统广告模型,熟悉Wide&Deep/DSSM/DIN等深度学习模型理论,有将算法应用于实际线上系统和业务的成功经验更佳; 4.具备良好的沟通表达能力和工作主动性,善于发现和解决问题,持续系统的优化能力; 5.有过广告/推荐/搜索相关优化算法工作经验、机器学习/数据挖掘/NLP论文发表或竞赛者优先。
热门职位