-
岗位职责 1、设计和优化AI Agent的Pipeline,包括模型调用、上下文管理和多模块协同 2、参与大语言模型的全参数微调,提升模型性能和适用性, 降低幻觉 3、基于强化学习(如PPO/DPO)实现模型偏好对齐和行为优化 4、针对具体场景进行Prompt工程优化,提升模型的响应准确性与质量 5、跟踪前沿技术动态,并将新技术应用到现有项目中, 协助团队完成算法落地 任职要求 1、本科及以上学历,计算机及其相关专业, 具备机器学习, NLP, AIGC等专业知识 2、编程基础扎实, 熟练掌握Python/java语言, 熟悉TensorFlow、PyTorch等框架 3、有大模型应用架构设计, Agent开发, 大模型微调的实际项目经验优先
-
15k-25k·15薪 经验不限 / 本科科技金融,人工智能服务 / 上市公司 / 500-2000人岗位要求: 1、积极配合算法研发团队,收集,清洗,整理数据,并进行数据标注,建立算法测试/训练数据集,为算法研发人员提供数据支撑; 2、负责算法的准确性,性能,稳定性,可用性等的测试和评测,完成算法和产品的集成测试,编写测试用例和测试报告; 3、能够依据算法的不同,从服务业务的功能、效果、稳定性进行测试设计与执行,根据业务的不同制定不同的测试策略,使用不同的测试方法,分析定位问题; 4、参与产品需求评审,具有较好的业务理解能力和沟通能力,测试严谨认真负责。 任职资格: 1、本科及其以上学历,超过1年TTS\ASR\NLP的相关测试经验; 2、了解自然语言处理,或语音识别的相关测试方法和基础知识,了解asr、nlp、tts的测试流程 3、熟悉测试流程以及测试相关技术者优先; 4、掌握Python语言,使用jmeter、potman等测试工具; 5、有较强的创新能力,良好的沟通能力以及团队协作能力; 6、良好的责任心、逻辑性、沟通能力,团队合作精神,独立并积极主动。
-
职位职责: 1、搭建质量领域大模型,并将其应用于实际测试场景,参与推进大模型、多模态、文本理解、生成算法、强化学习等人工智能技术在测试领域的应用; 2、负责业务的大模型算法研发,如模型微调、Prompt工程、RAG等相关工作; 3、探索数据建设、指令微调、偏好对齐、模型优化,分析模型指标,归纳训练规律,提升训练效果,使其具备优秀的内容理解能力,保证大模型在业务场景中快速适配和高效调用; 4、优化模型结构与训练算法,解决大模型的系统与算法中的难题, 积累行业解决方案。 职位要求: 1、计算机及相关专业; 2、具备优秀的代码能力,扎实的数据结构和基础算法功底,熟练掌握C/C++、Python、Java、Go中的1-2门,熟悉TensorFlow或者PyTorch等深度学习框架,特别是大模型训练、强化学习(RL)算法; 3、掌握大语言模型的算法原理和应用范式,如Fine-tuning、Prompt Engineering等,了解大规模分布式训练、LLM推理,能够设计和优化高并发高吞吐的在线系统,具有对话系统、推荐系统、大规模机器学习系统的实际开发经验和模型训练、部署经验; 4、熟悉Attention、Transformer、BERT、GPT等常用模型结构,熟悉LLaMA、ChatGLM、 LangChain 等开源大模型原理与实现; 5、具备独立解决复杂问题的能力,良好的沟通、问题分析和解决能力,具有团队合作精神,能够与团队共同推进技术进步。
-
1. 负责设备端语音降噪唤醒、识别、语义理解问题排查及优化研发,包括结合海尔语音设备整机结构进行语音效果问题分析、算法调优,设备端调试及问题修复; 2. 侧重于语音设备端降噪增强、识别、语义理解类算法研发及应用创新,推进海尔语音系统架构优化升级,推进语音技术在海尔产业落地,打造标准化解决方案;
-
职位职责: 1、负责生成式智能对话场景的算法研发,基于大模型技术建设智能化的对话机器人系统; 2、探索生成式Agent对话算法,包括大模型领域知识融入、对齐、逻辑推理和SFT等任务; 3、建设基于RAG框架的智能问答系统,优化文本&多模态理解、召回、相关性、问答生成等算法; 4、对长文本/海量文本进行深度分析、构建知识图谱,针对用户对话进行抽取事件、情感分析; 5、搭建和优化检索排序、在线生成系统,提供稳定的线上服务。 职位要求: 1、本科及以上学历,优秀的代码能力,掌握常用编程语言和算法,熟悉Pytorch或TF等框架; 2、有机器学习应用经验,有大模型、RAG、智能对话、搜索等领域丰富的实战经验,在生成式大模型、Query与用户理解、召回排序、知识图谱、智能交互中一个或多个领域有深入实践; 3、熟练掌握机器学习算法原理,能熟练运用机器学习、自然语言处理、匹配技术、运筹优化、强化学习、智能生成等技术解决有挑战性的问题,有业界项目经验或顶会论文发表者优先; 4、对数据敏感度极高,有良好的逻辑思维和定义以及解决问题的能力; 5、优秀的产品和业务感知能力,责任心强,积极主动,有良好的沟通能力和团队合作能力,能够完成有挑战的目标。
-
岗位名称:搜索、推荐算法工程师 岗位职能:算法工程师 工作年限:3-5年 学历要求:硕士及以上 工作职责: 负责如下场景的模型训练以及落地 1、自然语言处理场景;任务举例:文本分类、实体识别、query 分析、分词、情感分析等; 2、搜索、推荐召回场景;任务举例:基于 Query 的召回、基于 item 的召回等; 3、搜索、推荐精排场景; 岗位需求: 1、对数据敏感,具有优秀的逻辑思维能力,善于分析问题,解决问题; 2、精通主流深度学习框架:Tensorflow、PyTorch 等; 3、深刻理解机器学习和深度学习算法原理;对 query 分析、相关性、召回模型、机器学习 排序有深刻的理解和应用经验; 4、深刻理解深度学习算法的训练,可根据不同业务场景对模型本身进行调优,精通训练数 据的构造、训练超参的调整; 5、熟悉主流 NLP 算法及推荐算法,比如:BERT 模型、DSSM、ESMM、CRF、GNN 等; 6、有复现论文模型的相关经验; 7、有深度学习部署框架(Triton、Onnx、TFServing 之一)相关业务应用的落地经验; 8、了解大数据(Spark、Hive)技术; 9、熟悉 Java,有工程落地经验者优先;
-
职位描述: 1、追踪并改进前沿深度学习感知算法,包括但不限于多模态BEV物体检测分割,在线地图构建等; 2、构建各项任务的数据闭环与预标注系统,提升以数据为核心的算法迭代效率; 3、根据实际业务场景,优化并定制相关算法,部署进入自动驾驶系统。 职位要求: 1、熟悉至少一项无人车感知任务,有处理真实大规模数据经验; 2、熟悉python, c++; 3、动手能力强,可以快速将想法落实。 加分项 1、有计算机视觉或机器学习相关研究经验,有高水平论文发表; 2、参加kaggle或知名会议上举办的相关比赛取得优异成绩; 3、ACM/ICPC、CCPC、NOI、IOI等计算机/信息学竞赛获奖经历。
-
职位描述 1. 参与/负责推荐广告和搜索广告的排序算法设计和优化,提升整体变现效率; 2. 参与/负责广告系统全链路各模块优化,包括定向/召回/精排/投放机制设计等; 3. 对CTR/CVR模型的持续探索和优化; 4. 结合业务,通过设计和优化广告投放机制,提升流量变现效率; 职位要求 1. 熟悉深度机器学习/广告机制设计/数据挖掘中的一个或多个,具备实际工作经验; 2. 优秀的编码能力,扎实的数据结构和算法功底; 3. 有大型广告投放/推荐/搜索排序等相关工作经验者优先; 4. 优秀的分析和解决问题的能力,良好的团队合作精神;
-
岗位亮点 1. 团队集前沿技术探索、落地与一身,能够极大的发挥技术价值,未来拥有广阔的前景; 2. 部门业务快速发展,业务落地场景丰富,复杂度高,挑战大,你将拥有快速成长的空间; 工作职责 1. 参与大模型在领域的落地,用LLM洞察分析大规模的数据; 2. 基于大模型、agent思想,研发全新的对话交互项目; 3. 不断探索技术新领域,推动技术能力的沉淀、技术氛围、技术影响力建设; 任职资格: 1. 熟悉大模型的原理,具备精调、强化学习等方面的经验; 2. 熟悉自然语言处理常见算法与模型,具备深度学习技术再NLP领域的应用实践; 3. 具备良好的编程实现能力,熟练掌握python、pytorch、Transformers等机器学习套件; 4. 具有良好的逻辑思维和问题解决能力,具备强烈的进取心、求知欲,热衷于追求技术创新; 5. 有NLP顶会论文发表的very优先考虑。
-
工作职责: 1、各类业务相关数据的统计分析; 2、各类业务场景下的模型开发、评估、监控及迭代; 3、对可能存在的业务风险整理有数据支撑的报告提前预警; 4、对各类内外部数据进行深层次挖掘; 5、协同、帮助部门内外同事完成领导布置的各项工作。 任职要求: 1、对公司业务及阶段有足够认识及见解; 2、熟练掌握各类数据挖掘、模型开发相关技术及工具; 3、能按时保质完成领导布置的各项工作; 4、与部门团队其他成员相处融洽,能相互学习,相互帮助。
-
if (your_passions.includes(‘data’)) { switch(your_stacks) { case ‘Python’: case ‘Scala’: case ‘Natural Language Processing’: console.log(‘Join AfterShip’); break; } } 岗位职责 1、负责海外电商 SaaS 平台的 Product Intelligence 系统设计、开发和优化,赋能推荐、搜索、导购等业务场景; 2、利用 GenAI、深度学习等技术,开发和优化商品分类、属性抽取、销量预测、智能订价等算法,实现对商品信息的全方位理解和分析; 3、与产品、运营等团队紧密合作,理解业务需求,及时掌握和应用最新的业界动态,保持公司在跨境电商 SaaS 领域的技术领先地位。 岗位要求 1、本科及以上学历,三年相关算法工作经验,数学、统计学、计算机、数据挖掘、机器学习等相关专业优先;有英语听说能力,以及海外电商、SaaS 服务工作经验优先; 2、具备较好的数据敏锐度,具有缜密的逻辑思维能力、业务洞察能力、沟通表达能力; 3、具备数据挖掘、机器学习的基础理论和方法,熟悉数据挖掘领域常用算法,如 LR、聚类、W&D/DeepFM/DNN 等常用的深度学习算法; 4、在商品理解、多模态学习、内容理解方面有深入研究以及实践经历,对 GenAI 前沿进展保持关注。 加分项 1、具备开发能力,有使用 Docker、Kubernetes、AWS 或 GCP 云计算经验; 2、有写 Blog 的习惯,活跃技术社区,参与开源项目等; 3、有代码洁癖,对代码精益求精,对技术有极客热情。 为什么加入我们 1、朝阳行业:国际电商 SaaS 服务赛道,国际一线投资机构加持; 2、稳健发展:团队稳健扩张,业务规模及营收每年持续稳健增长; 3、多元文化:团队来自全球 20 多个不同城市,国际化视角、扁平化管理; 4、极客氛围:拥抱开源技术,实践敏捷开发,崇尚通过工具和自动化来解决问题; 5、特色福利:学习基金、 一对一帮带、内部商城、提供 MacBook 及可升降办公桌。
-
岗位职责: -结合电商的业务特性,进行模型和算法创新,打造业行领先的机器学习/深度学习算法平台能力。 -超大规模的机器学习模型优化,包括但不限于深度学习、强化学习、表征学习等,最大效率地提升电商流量效率。 岗位要求: -计算机及相关专业,具有扎实的算法和数据结构,优秀的问题理解能力和编码能力。 -扎实的机器学习理论基础,具有行业常用的机器学习算法实践经验。 -熟悉业界主流的机器学习平台,有大规模机器学习平台的研发经验者优先,有Tensorflow/PyTorch等机器学习框架使用经验者优先。 -具有电商相关业务的算法实践经验者优先,包括但不限于推荐、广告、搜索等。 -良好的团队合作和协调沟通能力,学习能力强,自我驱动力强。
-
岗位职责: 1. 负责通信网络与大语言模型结合的研发设计与管理。 2. 负责面向通信网络的大语言模型Prompt Engineering提示工程,大语言模型微调和基于langchain的通信网络认知增强工具研发。 3. 负责面向通信网络的AI算法研发框架设计与开发。 4. 负责面向通信网络的AI算法模块开发管理,根据行业需求指导算法模型的技术选型和性能优化,算法模型包括结构化数据的预测分析和异常检测、因果关系分析、自然语言处理、深度学习、强化学习等。 任职要求: 1. 计算机科学、机器学习、人工智能相关专业硕士及以上学历,具有3年(若博士则为1年)及以上AI产品研发和应用工作经验。 2. 熟悉LLM大模型基本原理及应用、langchain框架及应用,有GPT大模型研发经验者优先。 3. 深入掌握机器学习和深度学习,了解TensorFlow/pytorch/keras等深度学习框架。 4. 熟练掌握至少2种语言:Python, R, Matlab, SQL, Scala, Spark, PHP, SAS,Weka等。 5. 有良好的沟通表达能力,积极向上,细致认真。
-
职位描述 负责大数据集的采集、清洗、存储与管理,构建高效的数据处理流程。运用深度学习算法(如 CNN、RNN、Transformer 等)进行模型设计、训练与优化,解决复杂业务问题,包括但不限于图像识别、自然语言处理、预测分析等领域。协同团队进行算法的工程化实现,优化模型性能以满足大规模数据和高并发场景的需求,持续跟踪前沿技术,将新技术应用于实际项目,提升产品的智能性与竞争力。 任职要求 硕士及以上学历,计算机、数学、统计学等相关专业。熟练掌握 Python、C++等编程语言,具备扎实的编程功底和数据结构算法基础。熟悉 Hadoop、Spark 等大数据生态系统,有丰富的大数据处理经验。深入理解深度学习原理和框架(如 TensorFlow、PyTorch),在相关领域有实际项目经验和成果,能够独立承担算法研发任务,具备良好的团队协作、沟通能力与问题解决能力,较强的学习能力和自我驱动力,能紧跟技术发展趋势。 欢迎有志之士加入,共同探索大数据与深度学习在半导体制造产业的无限可能,推动技术创新与业务发展。
-
我们正在寻找一位经验丰富的推荐算法工程师,负责推荐算法的框架搭建和工程效能优化工作。该职位将主要负责TF和PyTorch框架在推荐系统中的应用,包括离线和在线训练优化、模型部署及生成式模型的实时预估。我们期待您的加入,共同推动公司的技术和业务发展。 岗位职责: 1. 离线Pipeline优化:优化TF框架的离线和在线逻辑,提升TF集群训练和GPU训练的离线pipeline资源利用率和效率。 2. 模型Serving:探索并搭建基于TF/PyTorch的Serving方案,实现推荐场景下的近线和在线预估流程。 3. 生成式模型应用:落地推荐领域的生成式模型预估框架,负责对应的训练加速和实时预估的部署。 4. 算法研发:优化工程效率,提升推荐系统的性能和效果。构建通用有效的工具和框架。 任职要求: 1. 教育背景:计算机科学相关专业本科及以上学历。 2. 工作背景:推荐算法领域3年以上的工作经验。 3. 技术经验: - 熟悉TF/PyTorch框架,具备离线Pipeline和在线Serving相应的部署和优化能力。 - 熟悉GPU加速相关技术,能够优化大规模数据的训练速度。 - 具有生成式模型应用经验,能够实现生成式模型的训练加速和实时预估部署。 4. 编程能力:精通Python编程,熟悉C++/Java或其他编程语言者优先。 5. 工程经验:具备扎实的工程能力,有大型推荐系统开发和优化经验者优先。 6. 沟通能力:良好的团队合作精神,具备跨团队沟通协作的能力。 7. 创新精神:热爱技术创新,乐于接受挑战,并能够持续学习和应用新技术。 优先条件: 1. 互联网公司推荐系统的相关工作经验。 2. 在推荐算法、机器学习或深度学习领域有高质量论文或专利。 3. 开源项目贡献经验。
热门职位