-
岗位职责: 1. 负责计算机视觉算法和深度学习算法的前沿技术的研发工作。 2. 负责物体检测(行人、车辆、OCR、通用目标)、分类、跟踪、识别、图像理解、图像质量评估和增强,视频分析等前沿技术研发和实现。 岗位要求: 1. 图像处理、模式识别、机器学习相关专业硕士及以上。 2. 在深度学习、统计机器学习、计算机视觉和最优化方法等方面有较深入的研究。 3. 熟悉物体(行人、车辆、人脸、通用目标)检测、跟踪与识别算法。 4. 熟悉图像理解(分类、分割等)、视频分析算法。 5. 熟悉cnn,rcnn,frcnn,boost,svm其中至少一种,并且有实战经验 6. 动手能力强,熟练掌握C/C /Python/Matlab语言,有较强的算法分析和实现能力 7. 精通Caffe、MxNet、Tensorflow、Cuda-convnet、Torch等任一种深度学习开源框架者优先。 8. 有智能安防领域经验者优先。
-
岗位职责: 1、负责行车场景周视感知算法设计和开发工作,包括高速/城区等场景中的障碍物、车道线等感知任务的模型及后处理算法开发工作 2、负责泊车场景环视感知算法设计和开发工作,包括室内、室外等场景中的车位、障碍物等感知任务的模型及后处理算法开发工作 3、负责自动驾驶领域大模型等前沿技术研发工作 任职要求: 1、计算机、汽车工业、机器人、电子或相关专业; 2、熟悉当前主流的深度学习算法,包括但不限于BEV感知、无监督训练、大模型、目标检测、图像分割、多任务学习、多传感融合等领域; 3、熟悉常用的深度学习框架,如PyTorch、TensorFlow、MxNet等,要求至少对其中一种框架较为熟练; 4、至少精通Python或C++编程,熟悉常用的视觉算法库如numpy/opencv等,了解常用的传统图像处理算法。 5、具备针对车载端侧平台检测/分割等算法设计经验和落地能力,有针对自动驾驶场景落地障碍物、车道线、红绿灯、freespace等算法经验者优先。 6、具有正确的价值观、内在驱动力;具有较强的学习能力、沟通能力和团队协作能力;能主动解决问题;能够承受较强的工作压力。
-
职位描述: 1、追踪并改进前沿深度学习感知算法,包括但不限于多模态BEV物体检测分割,在线地图构建等; 2、构建各项任务的数据闭环与预标注系统,提升以数据为核心的算法迭代效率; 3、根据实际业务场景,优化并定制相关算法,部署进入自动驾驶系统。 职位要求: 1、熟悉至少一项无人车感知任务,有处理真实大规模数据经验; 2、熟悉python, c++; 3、动手能力强,可以快速将想法落实。 加分项 1、有计算机视觉或机器学习相关研究经验,有高水平论文发表; 2、参加kaggle或知名会议上举办的相关比赛取得优异成绩; 3、ACM/ICPC、CCPC、NOI、IOI等计算机/信息学竞赛获奖经历。
-
职位职责: 1、从事视频理解基础模型的预训练、微调和优化研究。探索视频理解的能力边界和新应用; 2、搭建数据收集和处理流水线,设计评估方法,优化训练框架,使模型能在大规模数据上进行训练; 3、参与孵化与视频理解技术相关的新产品。 职位要求: 1、计算机、自动化、数学、电子等相关专业的博士; 2、在计算机视觉、多模态大模型等领域有积累,并取得了有深度的研究成果,作为主要作者在**会议/期刊发表过相关论文; 3、具备良好的团队协作素质,自驱性强,具备独立开展研究工作的能力; 4、算法和编程能力强,熟练掌握Pytorch等深度学习框架,Python编程语言,有大规模的模型训练经验优先。
-
岗位名称:搜索、推荐算法工程师 岗位职能:算法工程师 工作年限:3-5年 学历要求:硕士及以上 工作职责: 负责如下场景的模型训练以及落地 1、自然语言处理场景;任务举例:文本分类、实体识别、query 分析、分词、情感分析等; 2、搜索、推荐召回场景;任务举例:基于 Query 的召回、基于 item 的召回等; 3、搜索、推荐精排场景; 岗位需求: 1、对数据敏感,具有优秀的逻辑思维能力,善于分析问题,解决问题; 2、精通主流深度学习框架:Tensorflow、PyTorch 等; 3、深刻理解机器学习和深度学习算法原理;对 query 分析、相关性、召回模型、机器学习 排序有深刻的理解和应用经验; 4、深刻理解深度学习算法的训练,可根据不同业务场景对模型本身进行调优,精通训练数 据的构造、训练超参的调整; 5、熟悉主流 NLP 算法及推荐算法,比如:BERT 模型、DSSM、ESMM、CRF、GNN 等; 6、有复现论文模型的相关经验; 7、有深度学习部署框架(Triton、Onnx、TFServing 之一)相关业务应用的落地经验; 8、了解大数据(Spark、Hive)技术; 9、熟悉 Java,有工程落地经验者优先;
-
岗位名称:搜索、推荐算法工程师 岗位职能:算法工程师 工作年限:3-5年 学历要求:硕士及以上 工作职责: 负责如下场景的模型训练以及落地 1、自然语言处理场景;任务举例:文本分类、实体识别、query 分析、分词、情感分析等; 2、搜索、推荐召回场景;任务举例:基于 Query 的召回、基于 item 的召回等; 3、搜索、推荐精排场景; 岗位需求: 1、对数据敏感,具有优秀的逻辑思维能力,善于分析问题,解决问题; 2、精通主流深度学习框架:Tensorflow、PyTorch 等; 3、深刻理解机器学习和深度学习算法原理;对 query 分析、相关性、召回模型、机器学习 排序有深刻的理解和应用经验; 4、深刻理解深度学习算法的训练,可根据不同业务场景对模型本身进行调优,精通训练数 据的构造、训练超参的调整; 5、熟悉主流 NLP 算法及推荐算法,比如:BERT 模型、DSSM、ESMM、CRF、GNN 等; 6、有复现论文模型的相关经验; 7、有深度学习部署框架(Triton、Onnx、TFServing 之一)相关业务应用的落地经验; 8、了解大数据(Spark、Hive)技术; 9、熟悉 Java,有工程落地经验者优先;
-
职位职责: 团队介绍:抖音推荐团队,负责抖音的推荐算法,直接为抖音的核心用户体验负责,涉及内容消费,社交,直播,推送,同城,电商各个场景。我们的工作内容包括大规模推荐算法的优化、复杂约束的优化问题的解决、CV/NLP等多个学术领域的算法改进以及对多种场景的推荐架构的设计和对产品数据的复杂深入的分析。在这里,你可以深入钻研机器学习算法的改进和优化,探索前沿的技术;可以通过对产品的深度理解和思考,将算法应用到业务中去;也可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 1、负责抖音核心的业务推荐算法工作,与来自国内外**名校、有丰富业界经验的同学合作,共同搭建行业**的推荐系统,为用户提供一流的产品体验; 2、将前沿的机器学习技术应用到抖音的核心场景业务,优化用户体验促进业务发展; 3、研究方向包含且不局限于:深度学习、图神经网络、多任务学习、learning to rank、模型压缩和加速、多模态技术等,结合业务的实际问题来做好技术的探索和研究; 4、和产品、运营团队紧密合作,通过对产品和用户的深入理解和分析,制定算法策略促进抖音生态的长期繁荣发展。 职位要求: 1、具备优秀的编码能力,扎实的数据结构和算法功底; 2、对机器学习有热情、乐于学习、思考和创新,有自然语言处理、数据挖掘、计算机视觉相关的工作经验; 3、熟悉常见算法,如LR,GBDT,DNN等,具备推导,实现,应用能力; 4、熟悉C++和Python语言,熟悉Linux开发环境; 5、优秀的分析问题和解决问题的能力,有良好的沟通表达能力和团队精神。
-
工作职责 : 1. 负责计算机视觉、多模态AIGC内容生成领域的核心算法研发及效果优化,包含物体检测和识别、物体分割、视频内容理解、图文视频内容生成、虚拟数字人等方向; 2. 追踪和学习人工智能领域的国际前沿技术研究,结合业务需求,研发计算机视觉、多模态内容生成类算法,推动AI技术在保险领域的智能应用及落地,根据业务需求持续追踪应用效果并进行优化迭代,赋能保险行业智能化营销,数字化运营等。 任职资格 : 1. 硕士及以上学历,具备扎实的计算机基础知识,3年以上计算机科学、人工智能相关领域工作经验,熟悉物体识别与分类、物体跟踪、三维视觉、视频内容理解、文生图/图生文、虚拟数字人等主流算法及应用; 2. 算法基础扎实,有较强的算法理解和实现能力,熟悉掌握C/C++,Python等编程语言、常用数据结构算法以及Linux环境开发和实现, 熟悉掌握Tensorflow, Pytorch等深度学习框架,有熟练框架使用及模型训练及模型部署经验; 3. 学习能力强,紧跟国际前沿技术,富有创造性思维,表达能力良好,能独立高效完成中英文技术文档撰写。 4. 在相关国际会议或主流期刊,如CVPR、ICCV、ECCV、NeurIPS、SIGGRAPH等发表论文者优先,有计算机视觉/深度学习方向比赛经验并取得优秀名次者优先,有高质量Github项目经验者优先。 5. 责任心强,积极主动,有良好的沟通能力和团队合作能力,有技术负责、项目管理、多团队协作管理经验者优先。
-
职位需求描述: 我们正在寻找一位经验丰富的算法工程师加入我们的团队,利用机器学习解决业务问题。理想的候选人应该具有3-5年的算法开发经历,熟悉深度学习算法,对搜索引擎有深入的理解,并且有自然语言处理(NLP)的实践经验。 主要职责: 1. 基于深度学习和NLP的算法的开发与优化; 2. 研究并实现最新的算法技术,提供解决方案以满足公司业务需求; 3. 与团队紧密合作,改进和扩展当前的搜索引擎; 4. 分析和解释复杂的算法问题,并提出有效的方法解决。 5. 分析并解决搜索中的召回与排序问题 职位要求: 1. 本科或更高学历,计算机科学或相关领域; 2. 至少3-5年的算法开发经历,包括深入研究和应用深度学习算法; 3. 理解并熟悉主流搜索引擎的工作原理; 4. 具有NLP的实际操作经验,处理自然语言处理的相关问题; 5. 熟练使用Python/java编程并具有良好的代码习惯; 6. 具备优秀的分析和问题解决能力,对解决编程挑战充满热情; 7. 能够良好地进行团队协作,拥有良好的沟通与表达能力。 8.了解常见的机器学习、深度学习模型,熟悉tensorflow, pytorch等学习框架的使用
-
我们正在寻找一位经验丰富的推荐算法工程师,负责推荐算法的框架搭建和工程效能优化工作。该职位将主要负责TF和PyTorch框架在推荐系统中的应用,包括离线和在线训练优化、模型部署及生成式模型的实时预估。我们期待您的加入,共同推动公司的技术和业务发展。 岗位职责: 1. 离线Pipeline优化:优化TF框架的离线和在线逻辑,提升TF集群训练和GPU训练的离线pipeline资源利用率和效率。 2. 模型Serving:探索并搭建基于TF/PyTorch的Serving方案,实现推荐场景下的近线和在线预估流程。 3. 生成式模型应用:落地推荐领域的生成式模型预估框架,负责对应的训练加速和实时预估的部署。 4. 算法研发:优化工程效率,提升推荐系统的性能和效果。构建通用有效的工具和框架。 任职要求: 1. 教育背景:计算机科学相关专业本科及以上学历。 2. 工作背景:推荐算法领域3年以上的工作经验。 3. 技术经验: - 熟悉TF/PyTorch框架,具备离线Pipeline和在线Serving相应的部署和优化能力。 - 熟悉GPU加速相关技术,能够优化大规模数据的训练速度。 - 具有生成式模型应用经验,能够实现生成式模型的训练加速和实时预估部署。 4. 编程能力:精通Python编程,熟悉C++/Java或其他编程语言者优先。 5. 工程经验:具备扎实的工程能力,有大型推荐系统开发和优化经验者优先。 6. 沟通能力:良好的团队合作精神,具备跨团队沟通协作的能力。 7. 创新精神:热爱技术创新,乐于接受挑战,并能够持续学习和应用新技术。 优先条件: 1. 互联网公司推荐系统的相关工作经验。 2. 在推荐算法、机器学习或深度学习领域有高质量论文或专利。 3. 开源项目贡献经验。
-
工作职责 1.针对医疗领域特定问题,定义任务流程,收集或构建高质量数据集,对LLM进行微调; 2.利用提示工程、模型微调、调用工具插件等方式完成医疗领域特定应用的探索尝试; 3.尝试提升大语言模型在医疗方面的能力,包括但不限于高效训练、人工反馈对齐、多模态、可控文本生成、生成质量评估,以提升LLM性能。 任职要求 1.研究生及以上学历,计算机、电子工程、自动化控制等专业背景,有NLP的研究经验; 2.有扎实的数理基础和良好的逻辑思维能力,有深度学习算法框架使用经验; 3.良好的编程能力,熟悉Python,pytorch,linux下常用指令; 4.熟悉现有的多种大语言模型,例如llama、qwen等; 5.拥有医疗自然语言处理项目经验,或者对人工智能在医疗领域的应用有强烈兴趣; 6.有中文文本处理经验者优先,有计算机、医学、生物信息学等领域论文发表或者大赛获奖经历者优先。
-
岗位职责: 1、参与页面分析挖掘算法的研究与实现,通过算法策略优化页面分类模型、文本分类模型。 2、利用文本挖掘、图像理解等业界先进技术,对多模态内容进行挖掘与理解。 3、工作范围涵盖网页筛选与理解、网页与站点分类和去重、多类型非网页类多模态数据的处理和理解。 岗位基本要求: 1、计算机相关专业本科及以上相关学历,具备优秀的理解力、沟通能力和团队协作能力。 2、熟练掌握 c++/python/Java等编程语言,并且在机器学习,自然语言处理领域有扎实的理论功底和动手能力。具备优秀的逻辑思维能力和数据科学能力,在相关领域比赛中获奖优先。 3、在信息检索、自然语言处理/图像与视频理解等方面有非常扎实的理论功底,以及丰富的解决实际问题的项目经验。有信息检索相关领域工作经验优先。 4、善于学习领域前沿技术并能快速应用到实际工作当中,在自然语言处理,信息检索、计算机视觉等领域有相关学术论著优先。
-
工作职责: 1. 负责大语言模型LLM文本理解与文本生成算法研发,开展数据处理、模型训练及推理优化等工作; 2. 负责AIGC内容生成研发工作,将前沿自然语言生成技术应用于实际业务,构建行业垂直领域自然语言理解及生成系统,获取业务收益; 3. 负责自然语言处理方向基于 GPU 的并行多机多卡训练、高性能模型推理等; 4. 对行业最新动态进行跟踪,结合企业业务场景的具体需求,提出改进方案或新算法模型的开发计划,产生实际价值。 任职要求: 1. 对于自然语言处理技术应用到实际业务场景中并产生真实的商业价值具有强烈的热情,有责任感和较好的洞察力; 2. 拥有计算机、自然语言处理、深度学习等相关专业硕士及以上学历,且具备2年以上自然语言处理研究经历或相关工作经验; 3. 具备大语言模型研发经验者优先,具备多模态大模型项目经验者优先; 4. 熟悉一些开源的算法库或工具,如LTP、stanfordNLP、NLTK、Apache OpenNLP、scikit-learn等; 5. 熟悉多种AI框架(如TensorFlow、Pytorch、Keras),具备较强的开源技术集成能力者优先; 6. 具有较好的逻辑表达能力、良好的团队合作精神和高度的责任心。
-
1、参与图像、视频内容生成、理解、检索,自然语言理解等方向前沿技术研究 2、根据业务场景,给出相关算法层面解决方案并进行研发 3、完成相关模型搭建/调优/训练等相关工作,积极推动所负责能力的性能优化及工程化落地 4、持续关注相关领域最新进展,并进行前沿算法思想的落地验证 岗位要求: 1.计算机、数学等相关专业,硕士及以上学历,1-3年工作经验 2.数学基础扎实,能独立对现有算法进行定制优化提升 3.熟悉一般扩散模型、多模态模型,在图像生成、视频理解、多模态等方向有较为深入的研究,熟悉TensorFlow, Pytorch等框架 4.熟悉C/C++/python等语言,能熟练使用上述语言之一进行项目开发 5.了解数字图像处理一般方法,并有与深度学习相结合的实践经验; 加分项: 1.拥有扩散模型、多模态模型训练、调优经验者优先; 2.有AIGC方向项目商用落地经验者优先; 3.在国际期刊、会议上发表论文者优先
-
职位描述: 1. 自动驾驶多模态(Camera&Radar&Lidar) 感知处理和优化,包括感知信息的预处理,多模态融合,置信度估计等; 2. 研究先进的多模态感知算法,例如点云+图像的多模态前融合感知、learning-based多模态处理等; 3. 与上下游模块沟通,反馈、承接量产问题,打造量产数据闭环。 职位要求: 1. 扎实的C++开发能力,至少熟悉一种数据分析语言; 2. 有多目标跟踪、多模态融合、深度学习等相关经验; 3. 计算机,信号处理,数学,机器学习,机器人,自动驾驶或相关专业优先; 4. 良好的沟通能力,积极的自主学习态度,对工作认真负责; 5. 具备Radar/Lidar感知处理经验者优先。