-
岗位职责: 1、参与页面分析挖掘算法的研究与实现,通过算法策略优化页面分类模型、文本分类模型。 2、利用文本挖掘、图像理解等业界先进技术,对多模态内容进行挖掘与理解。 3、工作范围涵盖网页筛选与理解、网页与站点分类和去重、多类型非网页类多模态数据的处理和理解。 岗位基本要求: 1、计算机相关专业本科及以上相关学历,具备优秀的理解力、沟通能力和团队协作能力。 2、熟练掌握 c++/python/Java等编程语言,并且在机器学习,自然语言处理领域有扎实的理论功底和动手能力。具备优秀的逻辑思维能力和数据科学能力,在相关领域比赛中获奖优先。 3、在信息检索、自然语言处理/图像与视频理解等方面有非常扎实的理论功底,以及丰富的解决实际问题的项目经验。有信息检索相关领域工作经验优先。 4、善于学习领域前沿技术并能快速应用到实际工作当中,在自然语言处理,信息检索、计算机视觉等领域有相关学术论著优先。
-
1、负责挖掘与分析各类业务数据建立用户画像,并通过算法模型提升风控和反欺诈能力,以数据驱动风险决策,并提升决策效率; 2、挖掘业务需求,基于对机器学习的理解,定义不同场景下的数据解决方案,并选择有效的算法解决可能遇到的数据、场景相关问题,提升模型的性能和稳定性; 3、配合开发人员和大数据工程师完成模型的上线运行,并进行模型的监控、维护和调整; 4、跟踪模型或方案产生的业务影响,与各业务部门紧密合作,推动数据化决策。 任职资格: 1、**本科及以上学历,统计学、数学、经济学、金融等相关专业,并在数据挖掘相关工作上有1-3年工作经验,金融信贷行业的工作经验更佳; 2、扎实的机器学习和数据挖掘理论和技术基础; 3、有一定的Python和SQL使用能力,熟悉常用数据统计、分析和建模方法; 4、较好的团队合作精神和沟通能力; 5、优秀的分析问题和解决问题的能力,对解决具有挑战性的问题充满激情; 6、有一定英文沟通能力。
-
岗位职责: 负责设计和维护数据仓库架构,支持业务线包括但不限于Things to do、Mobility和酒店业务。 深入了解各业务线,通过数据分析支持业务决策和策略制定。 构建和优化数据模型,确保数据准确性和可靠性。 独立处理和优化复杂的数据集,改进数据质量和处理流程。 与业务团队和技术团队紧密合作,确保数据解决方案满足业务需求。 编写技术文档和维护数据仓库的数据字典。 职位要求: 拥有5年以上数据仓库领域的工作经验。 精通SQL和数据库技术,有实际操作大型数据库的经验。 具备扎实的数据模型构建经验,能够独立设计和优化复杂的数据模型。 对数据质量和底层数据处理具有丰富的经验,能够有效解决数据问题。 熟悉dbt的应用,有实际使用经验者优先。 具备良好的分析思维和问题解决能力,能够独立完成项目。 良好的沟通和团队合作能力,能够与不同背景的团队成员有效沟通。
-
【岗位职责】 1.协助进行国家重点项目中的ETL、指标计算、数据治理等的研发工作; 2.协助进行数据中台设计和研发,为知识图谱、人物建模、搜索推荐等提供高质量数据,开发灵活可扩展的处理流程以及直观易用的数据界面; 3.协助进行全球多语言技术数据的抓取/补全; 4.协助进行数据正确性/完整性自动化检查; 5.协助进行自动抓取入库流程框架开发; 6.数据统计框架开发; 7.相关数据文档的撰写。 【岗位要求】 1.硕士,计算机/数学相关方向专业,可确保每周3天实习; 2.熟练掌握python编程,了解常用的数据处理库如pandas等; 3.熟悉mysql数据库,能够熟练编写sql语句并优化; 4.有数据清洗、数据处理、数据自动化监测经历者优先; 5.熟悉一种或多种主流开源大数据平台组件者优先,如Flume、Kafka、Hadoop、Hive、Spark、Flink; 6.了解数据分析/挖掘常用方法者优先,如序列分析、关联分析、异常点挖掘、分类、聚类等; 7.有编程竞赛获奖经历者优先,如 ACM、中国大学生程序设计大赛、蓝桥杯、CCF 相关竞赛或 CCF 等级考试相关、PAT 等级考试; 8.良好的团队合作,较强的沟通能力、学习能力,对解决具有挑战性问题充满激情。
-
工作职责: 1、充分理解业务需求及痛点,利用数据挖掘、数据分析、机器学习等技术挖掘业务价值,解决业务需求; 2、负责风控、定价等板块具体的数据挖掘项目,包括但不限于数据加工、数据分析、特征工程、构建模型等工作,并就对应项目阶段性成果进行汇报与分享,为业务发展提供支持; 3、参与构建用户全生命周期营销管理,构建以用户运营为核心的高质量的标签体系; 4、与业务团队构建良好的合作关系,积极沟通交流,推动合作项目成功。 任职资格: 1、3年以上数据分析/数据挖掘/机器学习等相关领域经验;**本科或以上学历;熟悉保险业务优先考虑; 2、熟练使用Python/Scala/Java中一门或多门语言;熟悉Spark/Hadoop/Hive等大数据处理技术,有阿里大数据生态Maxcompute、Dataworks、PAI项目经验的优先考虑;熟练使用Sql进行数据处理; 3、熟悉机器学习基本理论、数据分析常用方法论等相关理论知识,了解概率论与统计学基础; 4、有多类数据挖掘项目的实施落地经验,全链路打通并工程化部署,且能不断优化,进而产生业务效果; 5、自我驱动,能主动深入了解业务,适应业务变化;有良好的个人表达和组织沟通能力,推进项目开展。
-
岗位职责: 1.建立面向大语言模型的数据去重、清洗、过滤能力。 2.高效处理海量数据,探索大语言模型的数据混合配比。 3.建立大语言模型的通用和领域评测能力。 4.持续跟进行业最新进展,不断优化提升面向大模型的数据算法能力。 任职资格: 1.计算机、人工智能、自然语言处理或相关领域的硕士或博士,能力突出的本科生。 2.具备良好的编程能力,熟练掌握Python等编程语言,掌握PyTorch等至少一种深度学习框架。 3.具备良好的沟通和团队协作能力,有较强的解决问题能力和动手能力。 4.具备1年以上相关领域的工作经验
-
岗位职责: 1、数据收集与预处理:数据收集:负责从各种数据源(如数据库、文件系统、网络等)中收集数据,确保数据的全面性和多样性。数据预处理:对数据进行清洗、整理、转换和归约等操作,以提高数据的质量和可用性。这包括处理缺失值、异常值、重复值等问题,以及将数据转换为适合挖掘的格式。 2、数据挖掘与分析:数据挖掘:运用统计学、机器学习和数据挖掘技术,对预处理后的数据进行深入分析和挖掘,以发现模式和趋势。这包括分类、聚类、关联规则挖掘、回归分析、时间序列分析等多种方法。数据分析:通过数据挖掘技术发现数据中的隐藏模式、关联规则和趋势,提取有用的信息和知识。这些分析结果可以用于业务预测、市场趋势分析、用户行为研究等多个方面。 3、模型构建与优化:模型构建:根据业务需求和数据特点,选择合适的机器学习算法或深度学习模型,构建数据分析模型。这些模型可以用于分类、预测、推荐等多个场景。模型优化:对构建的模型进行评估和优化,提高模型的准确性和性能。这包括调整模型参数、选择更合适的算法、优化特征工程等方面。 4、数据可视化与报告:数据可视化:利用数据可视化工具(如Tableau、Power BI等)将挖掘和分析的结果以直观、易懂的方式呈现出来。这有助于用户更好地理解数据和分析结果,发现数据中的规律和趋势。报告撰写:撰写数据挖掘和分析报告,向决策者和相关人员解释和说明分析结果,并提出相应的建议和决策支持。这些报告可以包括数据摘要、分析结果、模型性能评估等多个部分。 任职要求: 1、教育程度:计算机、数学、统计学相关专业;本科及以上学历。 2、工作经验:具备5年及以上专业工作经验。 3、知识:熟悉常用数据统计、分析和建模方法;熟练掌握各类算法包括分类算法、聚类算法、关联规则挖掘、异常监测等;熟练使用Python、Sql等语言; 熟悉大数据技术栈和工具,如Hadoop、Flink、Kafka等。 4、技能:熟悉数据作业流程,包括指标体系定义、数据清洗ETL、数据分析挖掘、数据可视化与展示;熟悉各种类型的统计方法,比如概率分布、相关性、回归、随机过程等;能够使用机器学习算法建立数学模型;熟悉常用大数据计算引擎flink;熟悉TensorFlow、PyTorch等深度学习框架。 5、核心能力素质:分析判断能力、解决问题能力、执行能力、沟通能力、文字能力、抗压能力、业务知识、工作主动性、责任意识、团队协作、严谨细致、服务意识、敬业精神、正直诚信。
-
岗位职责: 1、负责挖掘与分析各类业务数据建立用户画像,并通过算法模型提升风控和反欺诈能力,以数据动风险决策,并提升决策效率; 2、挖掘业务需求,基于对机器学习的理解,定义不同场景下的数据解决方案,并选择有效的算法解决可能遇到的数据、场景相关问题,提升模型的性能和稳定性; 3、配合开发人员和大数据工程师完成模型的上线运行,并进行模型的监控、维护和调整; 4、跟踪模型或方案产生的业务影响,与各业务部门紧密合作,推动数据化决策。 任职资格: 1、**本科及以上学历,统计学、数学、经济学、金融等相关专业,并在数据挖掘相关工作上有1-3年工作经验,金融信贷行业的工作经验更佳。 2、扎实的机器学习和数据挖掘理论和技术基础; 3、有一定的PYTHON 和 SQL使用能力,熟悉常用数据统计、分析和建模方法; 4、较好的团队合作精神和沟通能力; 5、优秀的分析问题和解决问题的能力,对解决具有挑战性的问题充满激情; 6、有一定英文沟通能力。
-
主要职责: 支持市场部的Campaign和数字营销策略,提供关于平台内部流量转化的详尽分析。 理解数据埋点和上报机制,有效处理A/B测试数据。 建立和维护基础事实表和维度表,为上游分析提供稳定的数据模型基础。 与研发和产品团队进行日常沟通,确保数据需求的准确性和实时性。 熟练使用SQL和Python进行数据分析和模型开发。 使用ETL工具优化数据处理流程和数据质量。 任职资格: 熟悉数仓建模方法,具备支持市场部Campaign、数字营销及平台内部转化率分析的相关经验。 了解数据埋点、上报及A/B测试数据处理。 能够独立建立和优化基础事实表和维度表。 精通SQL和Python,有使用ETL工具的经验。 良好的沟通技巧和团队合作能力,能够与技术团队和业务团队有效合作。 强大的分析能力,能够从数据中提取有价值的业务洞察。
-
【岗位职责】 1、应用前沿和经典算法,将算法应用在部门业务数据上,挖掘数据价值,提升人工效能,包括但不限于(LLM、NLP、图像识别等各方面); 2、分析各项影响业务提能增效的因素、各项业务细节,结合业务方向,给出可落地的整体的开发优化方案; 3、与产品/运营等配合,推进优化方案落地执行,带来业务的实际效率提升; 【岗位要求】 1、本科及以上学历,理工科专业背景者优先考虑,2年以上数据分析相关工作经验; 2、较强的逻辑思维能力、数据敏感度,擅长利用数据发现问题及解决问题; 3、熟练掌握基本的机器学习挖掘模型,对数据挖掘的理解不仅限于模型的应用,能把各类算法融合应用,并有相应的项目落地经验; 4、熟悉深度学习模型框架优先,限于tensorflow/pytorch/keras之一,掌握基本的nlp、cv算法应用能力,如文本分类,聚类,图像分类等。 5、扎实的工程能力,熟悉SQL,ES等主流数仓工具的使用,善于应用python等技术进行数据清洗,掌握模型开发、量化、部署能力; 6、较好的主动性和分享精神,良好的沟通和协作能力。
-
【岗位职责】 1.实现国家重点项目中的数据采集、传输、存储、计算、分析、可视化、数据治理等产品; 2.参与大数据AI系统的数据中台设计和研发工作,为知识图谱、人物建模、搜索推荐提供高质量数据、灵活可扩展的处理流程以及直观易用的数据界面; 3.全球多语言技术数据的抓取/补全; 4.数据正确性/完整性自动化检查; 5.自动抓取入库流程框架开发; 6.数据统计框架开发; 7.数据文档撰写。 【岗位要求】 1.本科及以上学历,计算机/数学相关方向专业,3-4年工作经验优先; 2.编程能力过硬,熟练掌握python或java编程; 3.会使用数据分析/挖掘常用方法,序列分析,关联分析,异常点挖掘,分类,聚类等,熟练使用数据分析及可视化工具Excel,Tableau等 4.熟悉mysql数据库,能够熟练编写sql语句并优化 5.有知识图谱、数据中台研发经验者优先; 6.有数据清洗、数据处理、数据自动化监测经历优先; 7.熟悉一种或多种主流开源大数据平台组件,如Flume、Kafka、Hadoop、Hive、Spark、Flink优先; 8.良好的团队合作, 较强的沟通能力、学习能力,对解决具有挑战性问题充满激情;
-
工作职责: 1、深入理解业务,分析业务数据,应用统计学、机器学习/深度学习算法实现数据建模; 2、负责用户/商品画像体系建设,针对海量用户行为和内容信息持续迭代、评估、完善用户/商品标签; 3、参与用户增长相关业务,包括但不限促销、营销、新客转化等,深入挖掘用户需求,推动业务应用转化。 职位要求: 1、计算机相关专业本科及以上学历,在数据模型/搜推算法实现方面有成熟经验; 2、具有搜推算法经验,精通常见的数据挖掘、机器学习和深度学习算法; 3、至少精通一门编程语言(Python、Scala、Java等),能熟练使用常见的数据分析工具; 4、熟悉至少一种深度学习框架(Pytorch、tensorflow、Keras等); 5、良好的沟通能力,具有跨团队的多方密切合作意识; 6、有电商经验优先,有用户增长经验优先。
-
岗位描述: 1.负责金融,保险,零售,物联网等领域的AI项目分析建模工作,挖据数据中的核心商业价值,解决客户业务中的问题; 2. 与客户沟通,了解业务逻辑及数据收集情况, 了解及构造最关键的因素与特征 3. 设计模型方案,与客户沟通并完成模型建造及优化 4、参与项目的落地开发,与开发团队合作完成模型应用和模型优化。 任职要求: 1.计算机、数据、统计学,工程学等相关专业,熟练应用至少一种数据分析工具 Python/R/SQL; 2.熟悉常用的机器学习模型/算法框架,如GBDT/LR/SVM,scikit-learn等; 3.很强的学习能力和动手能力; 4.思维敏捷,良好的逻辑分析能力、良好的沟通及组织能力; 5.乐于解决具有挑战性的问题; 6.有建模经验,尤其是机器学习建模经验者优先。 加分项: 1.精通一门编程语言,熟练使用常用算法和数据结构,对算法有较强的实现能力; 2.有机器学习、数据挖掘、信息检索等相关领域的理论背景,有研究或应用相关的工作经验;
-
职位描述 1、基于百亿级海量数据,发现用户行为规律,挖掘用户标签,并应用于内容安全业务; 2、针对特定场景,结合用户行为分析、内容识别,发现潜在的内容风险,为公司业务的发展保驾护航; 3、持续完善监控体系,快速发现、定位风险。 任职要求 1、计算机、数学或统计学相关专业硕士及以上学历,2年以上工作经验; 2、思路清晰,逻辑严谨,有高度的业务敏感性与数据敏感性; 3、掌握1-2门编程语言,java/python优先,有良好的编程风格; 4、熟悉机器学习、数据挖掘、数据分析、分布式计算其中一项或多项,有实际工作的经验。
-
工作内容: 1、负责用户画像挖掘及搜索排序算法等的创新研究及开发,进行线下和线上实验评估,并对于算法策略进行持续优化; 2、深入理解包括搜索、推荐等流量分发场景的业务模式,通过数据分析和挖掘,挖掘用户长短期兴趣偏好,驱动搜索推荐算法迭代; 3、在电商场景有人货场匹配的应用经验,针对AB实验等数据进行效果分析和归因分析,并不断从业务角度、数据角度推进各模块匹配效率的优化; 4、主动诊断及发现业务问题,科学的方法和分析输出业务策略,同时能基于复杂的业务问题进行数据挖掘和模型探索,沉淀业务分析思路,产出对业务和产品有价值的方案和建议,并能赋能供应商。 任职资格: 1.3年及以上相关工作经验;计算机、统计学、数学、信息技术等相关专业;研究生及以上学历优先; 2.良好的数据敏感度,能从海量数据提炼核心结果;有丰富的数据分析、数据挖掘、效果评估的经验和能力; 3.有机器学习算法基础、数据挖掘基础以及相关工作经验,熟悉常用的算法模型;有搜索或推荐场景数据算法、用户画像挖掘、数据挖掘等相关工作经验优先;精于逻辑推理、统计分析理论; 4.熟悉一种或多种编程语言Python/Java等;熟悉一种或多种主流的分布式深度学习计算框架Tensorflow/PyTorch等;熟悉Hadoop、Spark等分布式并行处理技术,熟练掌握Hive SQL语言; 5.具备良好的抗压能力、沟通能力和团队精神,有独立开展分析研究项目经验,有产品化思维。