-
职位职责: 团队介绍:抖音生活服务推荐团队主要负责抖音推荐feed&同城feed里生活服务相关的视频、图文、直播的推荐。负责为抖音正在快速发展的本地生活业务提供算法支持,包括但不限于提升转化效率、优化用户体验、探索抖音专属的商业模式等。在这里,你可以充分利用抖音的海量用户数据,结合前沿的机器学习技术充分提升流量效率;也可以和产品、运营等团队紧密合作,探索算法在本地生活业务上的落地场景,影响产品发展方向;甚至可以深度分析短视频对本地生活行业的影响,通过调整算法策略来促进行业的发展和变革。 1、负责抖音推荐feed&同城feed里生活服务相关视频、图文、直播的推荐,建设繁荣健康的生活服务内容生态; 2、将前沿的机器学习技术应用到抖音的本地生活业务场景,优化用户体验促进业务发展; 3、研究方向包含且不局限于:深度学习、图神经网络、多任务学习、learning to rank、模型压缩和加速、多模态技术等,结合业务的实际问题来做好技术的探索和研究; 4、和产品、运营等团队紧密合作,探索算法在本地生活业务上的落地场景,影响产品发展方向,甚至可以深度分析短视频对本地生活行业的影响,通过调整算法策略来促进行业的发展和变革。 职位要求: 1、本科及以上学历,计算机相关专业; 2、具备优秀的编码能力,扎实的数据结构和算法功底; 3、对推荐算法和机器学习有热情、乐于学习、思考和创新; 4、优秀的分析问题和解决问题的能力,有良好的沟通表达能力和团队精神; 5、熟悉机器学习基础知识,对推荐系统、计算广告、搜索引擎相关领域有经验者优先。
-
职位描述 负责探索兴趣、高热内容高效融合的个性化推荐系统,探索大模型技术在推荐系统中的应用,构建博文推荐、词推荐在同步场景的统一解决方案; 负责推荐系统中多样性、偏差问题、公平性问题、用户兴趣层次等方面问题的持续分析和优化; 职位要求 计算机相关专业,硕士及以上学历,211/985院校优先 扎实的算法和数据结构基础,优秀的编码能力,优秀的分析和解决问题能力; 机器学习基础扎实,熟悉深度学习算法(CNN/RNN/LSTM/RL/Transformer/面向内容推荐的大规模Sparse&Dense模型等); 熟悉至少一种主流深度学习编程框架(TensorFlow/PyTorch); 具备优秀的学习能力和良好的团队合作精神,较好的沟通能力以及抗压能力;
-
职位职责: 1、支持快速增长的抖音内容电商业务(包括视频电商和直播电商)的推荐算法工作,职责范围包括提升转化效率,改善购物体验,探索更高效的商业模式,提升内容生态健康程度等; 2、搭建业内领先的机器学习算法和架构,建模用户购物兴趣,提升用户体验; 3、应用先进的机器学习技术,解决各种在线/离线、大数据量/小数据量、长期/短期信号等不同场景中遇到的技术挑战,包括标签缺失、反馈周期长、收敛速度慢、信号相关性弱等; 4、对电商生态中用户、作者、商家的行为做深入的分析和理解,制定算法策略促进生态良性发展; 5、独立负责产业务场景中的一个模块,与产品、运营团队一起,对模块的未来发展进行规划和设计,制定推荐策略的目标。 职位要求: 1、具备优秀的编码能力,扎实的数据结构和算法功底; 2、优秀的分析问题和解决问题的能力,对解决具有挑战性问题充满激情; 3、对技术有热情,有良好的沟通表达能力和团队精神; 4、熟悉机器学习、自然语言处理、数据挖掘中的一项或多项,对推荐系统、计算广告、搜索引擎等相关领域有经验者优先。
-
岗位职责: 1.推荐系统方向的系统设计和后端开发实现、推荐策略和算法等。2.ctr server、标签系统、用户画像、内容推荐等相关方向的研发工作。3.海量用户服务架构、大规模数据平台、算法平台等相关开发和建设。 任职资格: 1.重点本科以上学历,计算机/数学相关专业;1年以上推荐相关方向研发经验。2.熟悉java或者c++,java语言优先;熟悉linux开发环境,较好的编程功底。3.对数据敏感,较强的动手实践能力、代码工程经验,逻辑思维强。加分项:1.了解nlp、特征工程、推荐系统、策略优化等。2.有大规模推荐系统架构设计和开发经验,知名互联网工作经历,有带团队经验优先。
-
岗位职责: 1. 负责微博主站搜索业务,含搜索算法技术的研究、理解业务需求、优化搜索召回、排序效果 2. 负责智能搜索引擎相关算法开发和落地应用,涵盖智搜问答、语义搜索、内容理解、物料挖掘等 3. 负责搜索推荐前沿技术的调研与实现,研究RAG、语义检索、内容生成等技术和算法,并应用到实际问题中 4. 大规模数据挖据和分析,从海量数据中挖掘检索高质量微博与账号 职位要求: 1. 熟悉机器学习常用算法,有3年以上搜索、推荐等项目经验 2. 熟悉常用的策略算法,对数据敏感,熟悉常用数据挖掘算法 3. 熟练使用C++/Java/Python至少一门语言,熟悉Hadoop、Spark等数据处理技术,有较强的算法设计和实现能力 4. 较强的技术攻关能力,能够跟进领域内最新技术研究成果,并结合应用场景快速实验和调优 5. 优秀的分析问题和解决问题的能力,对解决具有挑战性的问题充满激情 6. 良好的沟通能力,良好的团队合作精神
-
工作内容: 1、个性化推荐:通过数据挖掘和机器学习算法对用户兴趣偏好、画像建模,商品知识图谱构建,优化推荐算法提升推荐结果的准确性、多样性,增加用户粘性,提升用户价值; 2、机器学习算法应用:研究各类机器学习算法,包括LR、DNN、RNN、CNN、RL等算法,应用于实际场景中,实现技术驱动业务的提升; 3、算法架构和性能优化:数据实时处理,分布式机器学习模型训练,在线学习和预测,算法性能持续优化; 4、大量的业务场景:众多场景可供验证想法,影响千万级用户的购物体验; 职位要求: 1、熟悉常用机器学习算法,能够理解算法原理,并有能力研究和优化算法; 2、熟悉python、java、C++、Scala等其中一种编程技术,编程能力强,熟悉分布式计算框架; 3、有较好的数据意识,对电商推荐业务有丰富经验者优先; 4、工作主动性强,有责任心,沟通交流能力强
-
工作职责: 【岗位职责】 1、负责搜索推荐系统中算法模块的研究、设计和开发工作 2、通过召回、排序、重排等环节模型、策略的不断优化,持续提升点击率、转化率、GMV等业务指标 3、保持对业界大模型、深度学习、强化学习等前沿技术的跟进,并尝试在实际业务中落地应用 任职资格: 【技能要求】 1、计算机、数学等相关专业本科及以上学历,1年以上搜索、推荐或广告等方向算法经验 2、熟悉GBDT、DNN等常见机器学习算法,了解基本原理,具备应用实现能力 3、优秀的编码能力, 扎实的数据结构和算法功底,熟练使用Java、Python等主流开发语言中的一种 4、学习能力强,良好的团队精神和沟通表达能力
-
岗位职责: 1、负责搜狐新闻相关的算法研发、优化工作,运用策略和算法手段为用户带来更好的产品体验; 2、参与推荐系统的全链路开发与优化,包括但不局限于召回、排序、混排等; 3、通过对数据的敏锐洞察,深入挖掘产品潜在价值和需求; 4、追踪推荐领域的前沿技术,并进行模型创新,合理的运用在业务中; 任职要求: 1、推荐/搜索/广告/机器学习相关背景,有 1~3年工作经验; 2、有大规模推荐算法和系统研发经验者优先,对推荐算法有热情、乐于学习、思考和创新; 3、关注技术前沿进展,对解决具有挑战性问题充满激情; 4、较好的团队合作精神,较强的沟通能力和自我驱动力。
-
大众点评作为国内重要的本地生活消费决策参考平台,多年来深耕本地生活消费领域,深受广大用户的信任和喜爱。我们的业务覆盖了吃喝玩乐游购娱等生活场景,通过极具辨识度和公信力的”星级“和”评价“产品,为数亿用户提供了全面、可信的消费决策依据。为更好满足用户探索城市的需求,大众点评在原有星级和评价的基础上,以信息流产品形式,助力用户发现更多好去处。大量优秀年轻同学的加入,为我们的团队注入了澎湃活力。我们相信,真实的生活是不可替代的,真实的感受是值得记录的,真实的美好是要被看到的。希望优秀的你能和我们一起,帮助广大用户在大众点评上发现更多好去处,找到属于自己的人间烟火气,共创美好生活。 岗位职责 1. 参与点评搜索场景下召回/相关性/排序等核心模块的优化工作; 2. 关注业界在搜索/推荐场景的前沿技术,能够合理优化和解决实际业务问题; 3. 利用NLP/深度学习等相关技术,不断优化搜索用户体验,驱动业务规模增长。 岗位基本需求 1. 2年及以上推荐/广告/搜索等领域算法开发经验; 2. 具备扎实的编程能力和数据结构算法基础; 3. 熟练掌握NLP/深度学习等相关技术,熟练应用算法工具,如TensorFlow、PyTorch等; 4. 对数据敏感,具有优秀的逻辑思维能力,学习能力强,对解决挑战性问题充满热情; 5. 具备良好的团队协作能力和沟通能力。 具备以下者优先 1. 在大厂的搜推广领域有算法落地经验; 2. 在国际顶会或核心期刊上发表过学术论文。 岗位亮点 1. 参与点评搜索渗透的机遇和挑战,与业内搜索领域一流的技术团队一起攻坚业务问题; 2. 参与百亿级样本和十亿级特征规模的深度学习模型的训练,以及相关的离线在线pipeline的优化; 3. 深度洞察用户需求,参与业务策略的制定,在千万级别的用户场景上验证自己的想法; 4. 点评搜索核心研发团队,极具挑战的算法实战业务环境,特别适合希望在算法方向做深做强追求卓越的同学; 5. 完善的培养机制和良好的团队氛围,包括mentor、知识分享、技术博客/论文/专利机制等。 其他补充信息 点评技术部负责点评App相关业务的研发工作,支撑业务发展,为用户提供优质的服务,同时致力于用技术手段为点评APP的用户提供业界一流水准的用户体验。
-
岗位职责: 1.负责腾讯音乐集团相关产品推荐算法的设计实现与优化; 2.负责完善现有推荐系统的基础算法及并行计算框架; 3.负责音乐平台业务的基于用户/音乐特性的数据挖掘及推荐策略设计实现; 4.负责能够根据业务数据变化不断设计并调整算法策略来提升算法质量,并最终提升用户体验。 岗位要求: 1.硕士及以上学历; 2.计算机,统计,信息,数学等相关专业毕业优先; 3.扎实可靠的编程能力,精通C/C++/GO至少一门编程语言; 4.熟悉业内推荐算法及数据挖掘领域的技术热点和进展,对互联网在线音乐的推荐系统架构设计有深入了解; 5.了解Hadoop/Spark生态相关技术优先; 6.具备规模分布式数据存储与计算开发经验者优先; 7.沟通能力佳,表达能力出众者,音乐爱好者优先。
-
美团平台汇聚美食、外卖、酒店旅游、电影、打车、共享单车、休闲玩乐、美容美发等200多个品类和900万活跃商家,是具有全国影响力的零售科技平台。 我们团队不仅负责美团App的用户增长、大前端技术基础设施建设、公司语音和智能交互技术及产品研发,还承担了多条业务线的产品设计及品牌营销职责,同时整合地图服务部、客户服务和体验部等部门,致力于用科技提升美团数亿消费者、数百万商家、骑手、司机和团长的服务体验。美团平台拥有高并发、多业务的复杂场景,为技术深度优化提供了最佳实践可能。这里有简单、讲逻辑、有爱的团队,更是一块理想的实战场地,舞台广阔,欢迎你来尽情施展。 岗位职责 1. 负责美团App首页推荐全链路核心算法策略的优化迭代,通过海量数据分析挖掘、超大规模深度学习实践、供给/召回/排序/机制算法升级,结合产品形态的优化与创新,更好地匹配用户的多样化需求,提升美团App的用户及流量规模,并形成技术沉淀; 2. 深耕业务特点和生活场景(包括但不限于到家、到店、出行等场景),从美团LBS服务共性解决方案出发,探索大模型应用、用户实时意图识别、多业务异构供给混排、多目标价值定义等方向与挑战; 3. 负责推荐算法中的某个技术或业务方向,制定相应的中长期技术规划,并在具体场景成功应用; 4. 参与构建团队,培养核心骨干,打造团队核心竞争力。 岗位基本需求 1. 计算机、数学、统计或者相关专业本科及以上学历,2年及以上推荐、广告、搜索工作经验,优秀的编码能力,扎实的数据结构和算法功底; 2. 熟悉大规模机器学习、数据挖掘、分布式计算等领域前沿技术,了解召回、排序相关基础算法; 3. 具有一定的业务和产品敏感度,具有创新精神和理论结合实践的能力,有主动思考和学习的驱动力,优秀的分析问题、解决问题能力和团队合作意识,对挑战性问题充满激情。 具备以下者优先 1. 大流量规模下的推荐、广告、搜索经验,尤其是混排、重排、用户理解模块经验; 2. 有复杂业务环境下的算法创新及落地经验; 3. 密切关注业界最新进展,在KDD、SIGIR、RECSYS等顶会发表过创新性论文或调研业界论文并成功应用于实践; 4. 在Kaggle等平台上取得较大型机器学习/深度学习竞赛靠前名次。 岗位亮点 美团App大流量、多业务、异构供给场景,提供了业界最挑战性的推荐课题之一,在多业务异构混排、场景化推荐、推荐生态等方面都比单一的内容or电商推荐有更多需要突破的技术课题,特别适合希望在算法方向做深做强、追求卓越的同学。 1. 【业务核心】:直接上手迭代美团首页,做出的贡献可以影响到数亿人的日常生活; 2. 【方向多元】:算法、模型、策略、业务多方向选择;技术、行业、个人基本功全方位提升; 3. 【挑战性强】:从美团的多业务、多场景、多目标特性入手,解决业界核心问题,获得快速能力增长; 4. 【不设边界】:作为一家快速发展的企业,美团为优秀的同学提供更快的职业发展机会,无论你的背景和经历,只要你有才华和激情,都能在这里找到属于自己的舞台!
-
1、参与金融场景的大规模用户行为分析与建模; 2、参与个性化推荐场景算法工作,包括数据、算法和工程的全链路落地。 任职要求 1、计算机、数学或统计学相关专业本科及以上学历; 2、熟悉Linux,C++,Java和Python,优秀的编码与代码控制能力, 扎实的数据结构和算法功底; 3、熟悉大规模数据挖掘、机器学习,熟悉hadoop/hive,具备大数据查询分析能力; 4、快速学习 ,具备优秀的分析和解决问题的能力,良好的沟通协作能力。 5、实习期连续3个月以上,时间更长者优先 加分项: 1、有推荐系统、机器学习、信息检索、自然语言理解、计算广告学及算法博弈论相关领域研究及实践经验;
-
岗位职责: 负责叮咚买菜搜索和推荐相关算法工作,包括且不限于NLP、特征工程、模型策略开发等相关工作; 任职资格: 1.计算机,数学或统计学相关专业硕士及以上学历 2.扎实的机器学习基础,能够运用LR、GBDT等传统机器学习模型解决实际的业务问题; 3.扎实的深度学习基础,能够运用DIN、W&D、DeepFM、PNN等模型; 4.熟练使用一种或几种深度学习框架(如tensorflow、caffe、mxnet、pytorch等) 5.熟悉Python/Java/C++/Golang等至少一门编程语言 6.有推荐系统、自然语言处理、深度学习、搜索算法等方面的算法积累者优先
-
岗位职责: 深度参与彩贝壳推荐/搜索引擎开发,为算法团队提供工程侧支持,包括推荐系统维护,故障排查,迭代升级等。 岗位要求: 1.计算机,统计学,数学等相关专业毕业; 2.有3年以上推荐/预测算法领域实际工作经历; 3.具备良好的数据分析,模型评估能力,在推荐/预测领域有丰富的实战经验; 4.熟悉常用的机器学习算法(LR/GBDT/SVM等),熟悉深度学习的原理和实现,熟练掌握;Tensorflow/Torch/Keras等至少一种深度学框架; 5.深刻理解数据清洗,特特提取,以及机器学习,算法框架等理论; 6.具有良好的算法前瞻性; 7.积极主动,认真负责,具备良好的技术问题分析能力,团队协作能力,强烈的责任心以及抗压能力,不挑活;
-
推荐算法工程师(酷我业务线)
[北京·朝阳门] 13:04发布35k-45k·14薪 经验3-5年 / 本科工具类产品,内容社区,音频|视频媒体 / 上市公司 / 2000人以上岗位职责: 1.负责酷我音乐各业务场景推荐策略优化及算法研发; 2.通过理解用户行为,结合数据挖掘技术,快速迭代并优化用户体验,以及各项数据指标; 3.能够有效学习并落地工业界前沿推荐算法,对业务增长起到推动作用。 任职要求: 1.计算机、数学或相关专业本科以上学历,三年以上工作经验; 2.熟悉常用机器学习算法、深度学习算法,并在推荐系统/搜索/广告等有理论基础和实践经验; 3.熟悉TensorFlow、pytorch常见深度学习框架,熟悉Spark,Hive等大数据处理工具; 4.具有良好的工程实现能力,熟练掌握C/C++、Java、Python等至少一种编程语言; 5.有较好的学习能力、沟通能力、团队协作能力,积极主动,愿意接受挑战。