拉勾招聘 > 职场百科 > 数据分析需要学哪些

数据分析需要学哪些

数据分析需要学哪些

权威解释

一、统计学 我看一些人推荐了不少统计学的专业书籍,直接把人吓跑了。我自己就大学时候学过《概率论与数理统计》,其他统计相关的内容也没怎么看过。对于互联网的数据分析来说,并不需要掌握太复杂的统计理论。所以只要按照本科教材,学一下统计学就够了。 二、编程能力 学会一门编程语言,会让你处理数据的效率大大提升。如果你只会在 Excel 上复制粘贴,动手能力是不可能快的。我比较推荐 Python,上手比较快,写起来比较优雅。 三、数据库 数据分析师经常和数据库打交道,不掌握数据库的使用可不行。学会如何建表和使用 SQL 语言进行数据处理,可以说是必不可少的技能。 四、数据仓库 许多人分不清楚数据库和数据仓库的差异,简单来说,数据仓库记录了所有历史数据,专门设计为方便数据分析人员高效使用的。 五、数据分析方法 对于互联网数据分析人员来说,可以看一下《精益创业》和《精益数据分析》,掌握常用的数据分析方法,然后再根据自己公司的产品调整,灵活组合。 六、数据分析工具 SAS、Matlab、SPSS 这些工具经常有人推荐,我要说的是在互联网公司一般都用不上。做可视化的 Tableau,统计分析的友盟、百度统计,还有像我们神策分析等。

已有986人喜欢
已有0人不喜欢

其他解释

1.Excel 提到Excel大家都不陌生,很多小白非常喜欢用Excel来进行数据分析。即使是专业的分析人员,他们也会使用Excel处理聚合数据。因为Excel具备非常多的优点,例如: (1)使用方便 (2)简单易学 (3)能够查看每个步骤的结果 (4)无需编程基础 2.SQL语言 SQL(结构化查询语言)是一种用于处理和检索关系数据库中存储的数据的计算机语言,是关系数据库管理系统的标准语言。它具备很多优点,例如: (1)速度快。输入你要进行的操作,仅需几秒,操作就能完成。 (2)不需要你具备很强的编程能力。 (3)语言简单易学。 3.可视化工具 将数据可视化可以让人更加理解数据。人类都是视觉动物,图形往往比密密麻麻的文字更易于理解。在这里,我顺便给大家推荐几款好用的可视化工具: (1)Cognos:Cognos拥有强大的数据库平台。但是Cognos并不适合小白,因为它需要用户有很好的数据分析基础。 (2)Tableau:Tableau的可视化功能非常能打,操作也简单。用户只需在简单配置,拖拖拽拽就可以完成数据分析。 (3)FineBI:Cognos和Tableau的确非常好用,但是它们是两款国外软件,相关的学习资料比较少。而FineBI是一款国内软件,我们可以在各大平台找到海量的学习教程。同时,运用FineBI进行部署非常方便。 4.Python Tableau、FineBI这一类的可视化工具,的确可以自动生成报告。但是,如果想要进行更深入的探索,你需要学习Python来进行数据挖掘。 Python是一种面向对象的高级编程语言,主要用于Web以及应用程序的开发。Python拥有图形和可视化工具、以及扩展的分析工具包,能够更好地帮助我们进行数据分析。以下是Python的一些优点: (1)语法清晰,简单易学。 (2)开源且免费。 (3)库量非常大。 5.SAS SAS(统计分析软件)是一套模块化的大型集成应用软件系统。它由数十个专用模块构成,功能包括数据访问、数据储存及管理、应用开发、图形处理、数据分析、报告编制、运筹学方法、计量经济学与预测等等。因此,SAS能够对数据进行深层次的挖掘和分析。 6.Alteryx Alteryx是一种自助服务分析工具。用户可以快速混合和准备数据,即便没有任何编程能力的人,也可以在Alteryx中构建数据工作流。同时,Alteryx的运行速度也非常快。使用拖放式工作流程和数据清理技术,仅需几分钟,你就能得到输出结果。以下是Alteryx的其他优点: (1)能够融合数据。 (2)易于采购。 (3)可以建立工作流程。 7.“软”实力 光懂技术还不行,数据分析师还必须具备以下几种“软”技能: (1)很强的沟通能力。如果数据分析师不能将自己的分析结果表达清楚,那么他的分析结果将一文不值。 (2)熟悉业务内容。我们学习数据分析的最终目的,就是就业。因此,每个数据分析师都必须做到熟悉业务。 (3)快准狠地分析出最佳解决方案。了解了业务之后,数据分析师要找出最有效的数据分析方法,来对数据进行分析。

...展开全部

1、数学知识 在这里小编给大家推荐编程学习圈,有免费课程分享,开发工具 数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。 对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。 而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。 所以数据分析并非一定要数学能力非常好才能学习,只要看你想往哪个方向发展,数据分析也有偏“文”的一面,特别是女孩子,可以往文档写作这一方向发展。 2、分析工具 对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。 对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。 对于数据挖掘工程师……嗯,会用用Excel就行了,主要工作要靠写代码来解决呢。 3、编程语言 对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。 对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。 对于数据挖掘工程师,Hadoop得熟悉,Python/Java/C++至少得熟悉一门,Shell得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。 4、业务理解 业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。 对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。 对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。 对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。 业务能力是优秀数据分析师必备的,如果你之前对某一行业已经非常熟悉,再学习数据分析,是非常正确的做法。刚毕业没有行业经验也可以慢慢培养,无需担心。 4、逻辑思维 这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。 对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。 对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。 对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。 5、数据可视化 数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。 对于初级数据分析师,能用Excel和PPT做出基本的图表和报告,能清楚的展示数据,就达到目标了。 对于高级数据分析师,需要探寻更好的数据可视化方法,使用更有效的数据可视化工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。 对于数据挖掘工程师,了解一些数据可视化工具是有必要的,也要根据需求做一些复杂的可视化图表,但通常不需要考虑太多美化的问题。 6、协调沟通 对于初级数据分析师,了解业务、寻找数据、讲解报告,都需要和不同部门的人打交道,因此沟通能力很重要。 对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。 对于数据挖掘工程师,和人沟通技术方面内容偏多,业务方面相对少一些,对沟通协调的要求也相对低一些。 7、快速学习 无论做数据分析的哪个方向,初级还是高级,都需要有快速学习的能力,学业务逻辑、学行业知识、学技术工具、学分析框架……数据分析领域中有学不完的内容,需要大家有一颗时刻不忘学习的心。 快速学习非常重要,只有快速进入这一行业,才能抢占先机,获得更多的经验和机会。如果你完全零基础想要尽快进入数据分析行业,选择一家专业的大数据培训机构是个不错的选择。缩短学习周期,提高学习效率,时间即金钱!

...展开全部